首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在典型的约束阻尼结构中引入大厚度高剪切模量扩变层可提高减振效果,且一定范围内扩变层厚度越大,结构中的阻尼层振动过程中的剪切变形越大,减振效果越好。但厚度超过一定限度后,大厚度高剪切模量扩变层的引入又会影响约束阻尼结构整体弯曲变形,从而对减振产生不利影响。在本研究中,采用一种高剪切模量的硬质材料作为约束阻尼结构的扩变层,通过对扩变层开槽(镂空设计),可在较大厚度、较大剪切模量的设计下保证整体结构的弯曲变形,实现了较好的减振性能设计。设计了6种不同约束阻尼复合结构,以10 mm厚钢板为减振对象,采用模态应变能仿真计算法对敷设6种不同约束阻尼复合结构构件分别进行了模态和振动频响特性分析,并制备了相应的300 mm×300 mm规格小样,完成了减振试验验证。  相似文献   

2.
以玻璃纤维增强树脂作为约束层主要材料、丁腈橡胶为阻尼层、钢板为基板制备约束阻尼复合结构, 运用动态黏弹谱仪和悬臂梁共振法, 研究温度、约束层刚度和阻尼层结构对约束阻尼复合结构减振效果的影响。结果表明:自由阻尼复合板的最大阻尼范围落在阻尼层的玻璃化转变区;玻璃钢约束层能将复合结构的阻尼拓展至阻尼层的高弹态区域, 增加阻尼层厚度可以提高约束复合板的阻尼性能;提高孔隙率同样有利于约束复合板阻尼性能提升;铝板约束层提升作用尤为显著, 然而在海洋环境、干湿交替等强腐蚀场合中, 铝板极易腐蚀而丧失约束功能, 因此在这类特殊场合下耐腐蚀的玻璃钢具有优势。   相似文献   

3.
声学黑洞(Acoustic Black Holes,ABH)以结构厚度的幂律变化实现弹性波的汇聚,结合阻尼层能较好地抑制结构振动。为进一步实现结构的低频振动控制,将声学黑洞与约束阻尼复合,建立附加约束阻尼的二维声学黑洞薄板模型,采用数值方法计算加速度响应与结构损耗因子,研究二维声学黑洞板附加约束阻尼后的减振特性,并通过二维声学黑洞薄板振动试验开展验证,最后探究约束层材料、厚度及约束阻尼半径对声学黑洞板低频减振性能的影响规律。结果表明:相比于附加自由阻尼,约束阻尼使声学黑洞薄板在第一阶共振峰处的加速度导纳降低12.61 dB;当约束层厚度为截断厚度的2倍左右时,薄板整体可以达到较佳的减振效果。研究可为声学黑洞薄板结构的低频减振应用提供重要参考。  相似文献   

4.
以约束阻尼板在实际应用时重量和厚度限制为约束条件,依据约束阻尼结构设计理论进行结构设计并制备样品,对样品进行振动特性测试后识别其前5阶固有频率及模态阻尼比,并分析阻尼层材料参数、约束层材料参数及阻尼结构形式对约束阻尼结构阻尼性能的影响。  相似文献   

5.
基于统计能量分析方法并结合声振分析软件VA One,建立铝型材外地板的声学仿真预测模型,计算分析约束阻尼层厚度对型材的隔声量、声辐射系数的影响,以及结构平均隔声量和计权隔声量的变化趋势。计算结果表明:改变约束阻尼层的厚度,在低频区对结构减振降噪性能的影响较小;对高频区的影响较大,增加约束阻尼层的厚度对型材减振降噪的性能并不总是起着积极作用,当其厚度到达一定值时,反而会使型材向外辐射噪声的能力增强。平均隔声量和计权隔声量均随着约束阻尼层厚度的增加而增大,且计权隔声量大于平均隔声量。  相似文献   

6.
卫星飞轮安装支架的粘弹性阻尼减振设计   总被引:2,自引:0,他引:2  
应用粘弹性约束阻尼减振技术对某卫星飞轮组件安装支架结构进行振动抑制处理。约束阻尼技术能在不对结构作大的修改的前提下,提高结构的阻尼能力。首先建立原型支架结构的有限元模型,计算了其动态特性。分析了支架结构关键模态的应变能分布规律,确定出约束阻尼处理的铺敷位置。采用参数优化方法,比较了不同约束层厚度、不同阻尼层厚度设计情况下的结构阻尼性能,在满足附加重量和工艺限制要求的前提下,确定出阻尼减振设计方案。最后,将阻尼前后支架结构的加速度频率响应结果进行了对比,验证了在飞轮安装支架上应用粘弹性阻尼减振的合理性和有效性。  相似文献   

7.
约束层阻尼作为表面阻尼的一种方式,通常用于解决金属板状结构的振动和噪声问题。目前,通常采用阻尼材料的损耗因子、储能模量来评估材料的减振性能,但是这种方法不能直接有效地评估阻尼材料在实际应用中的所获得的减振降噪的效果。采用正弦扫描和类白噪声随机振动激励激振简支梁的方法,通过分析响应数据来表征约束层阻尼的减振降噪效果。  相似文献   

8.
约束层阻尼是飞机舱壁结构减振降噪的常用材料。为快速预计敷贴约束层阻尼的飞机壁板的隔声特性,以声阻抗管条件下均匀板传声损失测试结果和有限元模型计算结果为依据,分析约束层阻尼的质量、阻尼损耗因子及约束层厚度对板传声损失的影响效果,进而在混响室-全消声室条件下测试有限尺寸飞机壁板模型敷贴约束层阻尼板的隔声量。验证了基于阻抗管中获得约束层阻尼参数与整体传声损失的关系可用于预计飞机壁板敷贴约束层阻尼后的隔声特性。  相似文献   

9.
空间桁架结构由于管壁刚度大、末端载荷悬臂安装,传统直接敷加约束阻尼层的方法,减振效果并不明显。通过减振优化技术,设计出空间桁架和航天载荷的最优结构。这是一种打断长管结构,在打断后短管上敷加自由阻尼层,通过胶黏剂来进行连接。这种结构与直接在长管上敷加约束阻尼层的结构相比,减振效果更好,质量也更轻。采用BK测试系统,对原始模型和打断长管新模型进行了振动试验过程中的数据采集,得到了空间桁架结构在X、Y、Z 3个方向上载荷测点的加速度响应情况。试验结果表明,打断长管方案结合敷加黏弹性约束阻尼层的方法结构简单、易于实现,能有效降低桁架末端航天载荷的振动水平,对其他空间结构的减振设计具有重要的借鉴意义。  相似文献   

10.
通过分析比较,选用基于模态应变能理论的有限元分析方法。首先验证了方法的精确性,对于算例,前五阶结构固有频率平均误差为0.020,模态损耗因子平均误差为0.112。进而以阻尼层厚度为变量,对被动振动控制结构的两种典型形式——自由阻尼结构和约束阻尼结构,进行动态力学性能研究,研究结果表明:阻尼层厚度从0.2 mm增加到1.5 mm,两种阻尼结构的固有频率降低,损耗因子提高;相比之下,自由阻尼结构的减振性能更为依赖阻尼层厚度,即对于较小的阻尼层厚,约束阻尼结构的减振性能更为优异。  相似文献   

11.
《Composites Part A》2007,38(1):210-216
The mechanical performance of injection moulded long glass fibre reinforced polypropylene with a glass fibre content in the range 0–73% by weight has been investigated. The composite modulus exhibited a linear dependence on fibre content over the full range of the study. Composite strength and impact resistance exhibited a maximum in performance in the 40–50% by weight reinforcement content range. The residual fibre length, average fibre orientation, interfacial shear strength, and fibre strain at composite failure in the samples have been characterised. These parameters were also found to be fibre concentration dependent. The interfacial shear strength was found to be influenced by both physical and chemical contributions. Theoretical calculations of the composite strength using the measured micromechanical parameters enabled the observed maximum in tensile strength to be well modelled.  相似文献   

12.
《Composites》1994,25(3):197-203
The structure and properties of the fibre/matrix interface region play a major role in determining the performance of structural composites. One of the main factors which influences the interface region is the fibre surface coating applied by the manufacturer. The influence of these coatings on the interfacial strength of glass fibre/polypropylene composites has been evaluated using the single fibre pull-out test. Results indicate that silane coupling agent alone has little effect on the interfacial strength. However, in combination with some other component of the coating, significant effects were found. The level of glass fibre/polypropylene interfacial strength varied by an order of magnitude depending on the nature of the fibre coating. Furthermore, the flexural strength of a unidirectional glass-reinforced polypropylene laminate varied by a factor of two depending on the type of glass fibre coating. The flexural strength results correlated well with the level of interfacial shear strength as measured by the single fibre pull-out test. The interfacial shear strength could also be correlated with the level of fibre surface coverage given by the fibre coating as measured using X-ray photoelectron spectroscopy.  相似文献   

13.
《Composites》1994,25(7):661-670
The single-embedded filament fragmentation test has been used to study the effect of fibre coatings on the adhesion of surface treated (oxidized) Type A and HS carbon fibres to an epoxy matrix. The presence of a sizing resin on the as-received fibres reduced the interfacial shear strength of the composite. For the unsized fibres, which were coated in the laboratory from commercial aqueous based sizing emulsions, a molecular weight dependence was observed. This suggests that compatibility of the deposited size with the matrix determines the adhesive bond between fibre and matrix and the formation of an interphasal region. On the other hand, deposition of a sizing resin from solution led to the differing conclusion that chemical interaction with the fibre surface had occurred. During composite fabrication these sizing resins will therefore have to act as ‘coupling agents’ to the matrix. Solvent extraction of emulsion-deposited sizing resins, particularly at elevated temperatures, appeared to promote their interaction with the fibre surface. The same trends in interfacial shear strength were observed in a second epoxy resin matrix of higher modulus, albeit at an increased magnitude. In this way, the plasticizing role of the ‘low’ molecular weight emulsion based size could be identified. Maximum likelihood statistics have been used to estimate the standard deviation on the value of interfacial shear strength.  相似文献   

14.
The role of interfacial adhesion between fibre and matrix on the residual strength behaviour of carbon-fibre-reinforced metal laminates (FRMLs) has been investigated. Differences in fibre/matrix adhesion were achieved by using treated and untreated carbon fibres in an epoxy resin system. Mechanical characterisation tests were conducted on bulk composite specimens to determine various properties such as interlaminar shear strength (ILSS) and transverse tension strength which clearly illustrate the difference in fibre/matrix interfacial adhesion. Scanning electron microscopy confirmed the difference in fracture surfaces, the untreated fibre composites showing interfacial failure while the treated fibre composites showed matrix failure. No clear differences were found for the mechanical properties such as tensile strength and Young's modulus of the FRMLs despite the differences in the bulk composite properties. A reduction of 7·5% in the apparent value of the ILSS was identified for the untreated fibre laminates by both three-point and five-point bend tests. Residual strength and blunt notch tests showed remarkable increases in strength for the untreated fibre specimens over the treated ones. Increases of up to 20% and 14% were found for specimens with a circular hole and saw cut, respectively. The increase in strength is attributed to the promotion of fibre/matrix splitting and large delamination zones in the untreated fibre specimens owing to the weak fibre/matrix interface.  相似文献   

15.
Wood fibre reinforced polypropylene composites at fibre content 50% by weight have been prepared and different types of wood fibres (hard wood fibre, soft wood fibre, long wood fibre and wood chips) were treated with coupling agent (MAH-PP) to increase the interfacial adhesion with the matrix to improve the dispersion of the particles and to decrease the water sorption properties of the final composite.The present study investigated the tensile, flexural, charpy impact and impact properties of wood fibre reinforced polypropylene composites as a function of coupling agent and fibre length and structure.From the results it is observed that wood chips-PP composites showed better tensile and flexural properties comparative with the other wood fibre-PP composites with the addition of 5%MAH-PP, which is around 65% and 50% for tensile strength and flexural strength respectively. Hard wood fibre-PP composites showed better impact characteristic values comparative to other wood fibre-PP composites with the addition of 5%MAH-PP and damping index decreased about to 60%. Charpy impact strength also increased up to 60% with the addition of 5%MAH-PP for long wood fibre-PP composites. Water absorption and scanning electron microscopy of the composites are also investigated.  相似文献   

16.
《Composites Part A》2002,33(9):1239-1252
Carbon fibres are gaining use as reinforcement in glass fibre/polyester composites for increased stiffness as a hybrid composite. The mechanics and chemistry of the carbon fibre–polyester interface should be addressed to achieve an improvement also in fatigue performance and off-axis strength. To make better use of the versatility of unsaturated polyesters in a carbon fibre composite, a set of unsaturated polyester resins have been synthesized with different ratios of maleic anhydride, o-phthalic anhydride and 1,2-propylene glycol as precursors. The effective interfacial strength was determined by micro-Raman spectroscopy of a single-fibre composite tested in tension. The interfacial shear strength with untreated carbon fibres increased with increasing degree of unsaturation of the polyester, which is controlled by the relative amount of maleic anhydride. This can be explained by a contribution of chemical bonding of the double bonds in the polymer to the functional groups of the carbon fibre surface.  相似文献   

17.
The microstructure and mechanical properties of two aluminium-based composites reinforced with Nicalon fibre are investigated. During composite processing, aluminium carbide forms at the interface as a result of a reaction between aluminium and free carbon in the fibre. Magnesium, when present in the aluminium matrix, diffuses into the outer (~ 200 nm) layer of the fibre where it reacts with the silicon oxycarbide constituent to form magnesium-containing oxide and also to free carbon for the production of more interfacial aluminium carbide. These chemical reactions affect to differing degrees the strength of a fibre, as measured after extraction from the two composites, and influence the respective fibre/matrix interfacial friction stress and composite strength. A simple rule-of-mixtures approach based upon the measured strength of extracted fibres gave some agreement with longitudinal properties of the composite, but treatment of the fibres as bundles, using a Weibull probability distribution of properties, provided more accurate predictions.  相似文献   

18.
Polypropylene (PP) composites reinforced with recycled carbon fibre have been prepared through extrusion compounding and injection moulding. The reinforcing potential of the recycled fibre was increased by improving the interfacial adhesion between the fibre and PP matrix and this was done by the addition of maleic anhydride grafted polypropylene (MAPP) coupling agents. Three MAPP couplers with different molecular weights and maleic anhydride contents were considered. The effects on the mechanical properties of the composite were studied, and scanning electron microscopy (SEM) was used to study the fracture morphology of the tensile specimens. It was observed that with the addition of MAPP the interfacial adhesion was improved as fewer fibres were pulled-out and less debonding was seen. A microbond test was performed and a significant improvement in interfacial shear strength was measured. This resulted in composites with higher tensile and flexural strengths. The maximum strength was achieved from MAPP with the highest molecular weight. Increased modulus was also achieved with certain grades of MAPP. It was also found that the composite impact strength was improved significantly by MAPP, due to a higher compatibility between the fibre and matrix, which reduced crack initiation and propagation.  相似文献   

19.
Adhesion at the fibre-matrix interface in fibre-reinforced composites plays an important role in controlling the mechanical properties and overall performance of composites. Among the many available tests applicable to the composite interfaces, the vibration damping technique has the advantages of being non-destructive as well as highly sensitive. An optical system was set up to measure the damping tangent delta of a cantilever beam, and the damping data in glass fibre-reinforced epoxy-resin composites were correlated with transverse tensile strength which are also a qualitative measurement of adhesion at the fibre-matrix interface. Four different composite systems containing three different glass fibre surface treatments were tested and compared. Our experimental results showed an inverse relationship between damping contributed by the interface and composite transverse tensile strength. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
《Composites》1994,25(7):698-705
The role of sizing resin in carbon fibre-reinforced polyethersulfone has been studied using surface-treated Type A carbon fibre sized with different polymeric coatings. To investigate their influence on the adhesion of the carbon fibre to the matrix, the single embedded filament fragmentation test was used. Sized carbon fibres showed a higher interfacial shear strength than the unsized ones. Analysis by time-of-flight secondary ion mass spectrometry suggests that this arises from a strong interaction between sizing resin, the fibre and the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号