首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
制备了聚磷酸铵(APP)/可膨胀石墨(EG)复配阻燃的硬质聚氨酯泡沫塑料,并分析了复配阻燃剂对其氧指数、烟密度、炭层形貌以及力学性能的影响。结果表明:当APP∶EG为1∶3时,各添加量下的氧指数均达到最高,最高可达35.5%;APP的加入可明显改善EG烟密度大的缺点,且APP生成的紧密炭层将EG生成的蠕虫状炭层固定在材料内部;随着复配阻燃剂的加入泡沫压缩性能提高,冲击性能下降。  相似文献   

2.
以聚磷酸铵(Ammonium Phosphate,APP)为阻燃剂,采用PI(poly-imide)预聚法制备了APP阻燃聚氨酯-酰亚胺泡沫塑料。利用偏光显微镜、扫描电子显微镜(SEM)、热重(TGA)观察分析了APP对泡沫泡孔结构、热稳定性和炭层形貌的影响。重点探讨了泡孔结构的变化对燃烧后的炭层形貌的影响,并模拟了炭层的形成过程。结果表明,随着APP添加量的增加,泡孔直径由540.39μm下降到277.83μm,泡沫密度增加;APP的加入使泡沫的残炭率增加了30%;泡孔的棱边和顶点分别炭化膨胀为炭层上的棒状炭层和球状炭层,而泡孔薄膜破裂成孔洞;并且随着APP添加量的增加,棒状炭层和球状炭层尺寸增加,孔洞变小。  相似文献   

3.
以9,10-二氢-9氧杂-10-膦杂菲-10-氧化物(DOPO)、甲醛和二乙醇胺为原料合成了新型反应型阻燃剂9,10-二氢-9-氧杂-10-[N,N-二(羟乙基)氨甲基]-10-膦杂菲-10-氧化物(DAM-DOPO),对其结构和在聚氨酯泡沫中的存在形式进行了表征,并对DAM-DOPO进行热失重分析。将DAM-DOPO与聚磷酸铵(APP)复配,制备了DAM-DOPO/APP阻燃聚氨酯泡沫塑料,并对其阻燃、力学性能及阻燃机理进行了研究。结果表明,合成的DAM-DOPO具有比DOPO较高的残炭率,最大热失重温度也向高温移动;DAM-DOPO应用到聚氨酯泡沫中起到了气相和凝聚相阻燃;复配阻燃剂总质量分数一定时(20%),随着APP所占比例的增大,PUF生成平滑致密的炭层,氧指数逐渐升高,烟密度等级逐渐降低,当m(DAM-DOPO)∶m(APP)=1∶4时,PUF的极限氧指数为24.0%,烟密度等级为34.98,水平燃烧距离Ld为8mm;冲击强度随着DAM-DOPO添加比例的减小而降低,当m(DAM-DOPO)∶m(APP)=1∶4时,PUF的冲击强度为0.065kJ/m2。  相似文献   

4.
比较了4种不同液体含磷阻燃剂——甲基膦酸二甲酯(DMMP)、磷酸三(β-氯异丙基)酯(TCPP)、二甲基膦酸丙酯(DMPP)以及1种新型阻燃剂膦酸二甲酯1201(DM-1201)对硬质聚氨酯泡沫塑料(RPUF)的阻燃效果和抑烟效果的影响。同时考察了这4种阻燃剂对RPUF一些物理性能的影响,包括吸水率、导热系数、压缩强度。研究表明,DM-1201的阻燃、抑烟效果最好,添加DM-1201的试样其氧指数(LOI)从纯RPUF的19.5%提高到了25.7%,单位质量的烟密度等级(SDRpm)也较纯RPUF降低了12.3%;在改善材料的压缩强度方面也最有效,垂直于泡孔生长方向上的压缩强度较纯的RPUF提高64.1%;而且添加DM-1201对RPUF的导热系数影响最小。热失重分析表明,DM-1201在提高RPUF的残炭量方面也比另外3种阻燃剂好。  相似文献   

5.
复配无卤阻燃聚氨酯泡沫塑料的制备与表征   总被引:1,自引:0,他引:1  
通过添加N,N’-二(2-硫代-5,5-二甲基-1,3,2-二氧磷杂环己基)乙二胺(DDPSN)、三聚氰胺(MA)、聚磷酸铵(APP)单组份阻燃剂及其复配阻燃剂,制得无卤阻燃聚氨酯泡沫塑料,并对其阻燃性能、力学性能、密度、吸水率以及热性能等进行了研究。研究结果表明,单组份阻燃剂中DDPSN阻燃效果较好,复配阻燃体系中,DDPSN与MA以及DDPSN与APP均具有良好的协同阻燃效果,其中DDPSN与APP协同效果最好。拉伸测试表明,单组份阻燃剂中APP表现较好,DDPSN/APP复配对聚氨酯泡沫的力学性能提高较大。DDPSN/APP复配阻燃体系对聚氨酯泡沫塑料的表观密度和孔结构影响不大,但使泡沫塑料的降解温度提高。  相似文献   

6.
氧化铋在膨胀阻燃聚丙烯体系中的催化协效作用   总被引:3,自引:0,他引:3  
将聚磷酸铵(APP)和双季戊四醇(DPER)膨胀型阻燃剂应用于聚丙烯(PP)的阻燃,并加入少量氧化铋(Bi2O3)。采用极限氧指数、烟密度和热分析等表征其阻燃性能。结果表明,加入少量的Bi2O3(0.1%质量分数,下同),可以提高体系的氧指数,降低体系的烟密度。热失重分析表明,Bi2O3加入可以使APP生成更多的固相残留物,催化膨胀阻燃剂交联成炭,高温时残炭增加,阻燃体系的最大热失重速率对应温度后移。同时热老化实验表明,Bi2O3的加入没有加快体系热老化的现象。  相似文献   

7.
以聚磷酸铵(APP)为主阻燃剂,采用"一步法"工艺制备了环保高效的无卤阻燃全水发泡半硬质聚氨酯泡沫。通过旋转黏度计、扫描电子显微镜、氧指数测量仪、水平垂直燃烧仪、万能材料试验机研究了聚磷酸铵与氢氧化铝(AH)、甲基磷酸二甲酯(DP)的无卤阻燃复合体系对聚氨酯泡沫的发泡行为、结构与性能的影响及规律。研究表明,各无卤阻燃复合体系物料的黏度均随APP用量增加而增大,当APP用量大于30pphp时,黏度增幅变大,尤以添加AH的体系为最。各体系的氧指数均表现出随APP用量增加而增大的趋势,并在APP用量为60pphp时趋于相近值(26.7%),APP/DP体系只能达到垂直燃烧的V-2级别,而只添加APP和APP/AH体系均未达到垂直燃烧级别。只添加APP的体系和APP/AH体系在APP量较高时均因物料黏度大反应过热导致体系发泡不稳定出现内部缺陷,压缩性能下降。  相似文献   

8.
针对聚磷酸铵(APP)有一定的水溶解性和阻燃效率不高等问题, 提出了采用氢氧化铝(ATH)包覆改性APP的方法。X射线荧光光谱(XRF)和扫描电镜(SEM)分析结果显示, 在APP颗粒表面实现了ATH的包覆改性。测试表明, ATH包覆改性后的APP溶解度明显下降, 比表面大幅增加。将改性后的APP与双季戊四醇(DPER)复配, 作为膨胀阻燃剂添加到PP中, 阻燃PP的燃烧性能测试结果表明: 阻燃剂总添加量为25%时, 包覆ATH的APP使阻燃PP 3.2 mm样条的垂直燃烧级别从V-1提高到V-0, 氧指数(LOI)从26.6%增加到31.8%, 热释放速率峰值(PHRR)从475 kW/m2下降至308 kW/m2, 下降了约35%。对阻燃PP的燃烧残炭研究说明, APP经ATH包覆改性后, 促进了阻燃PP在燃烧时形成更加完整均匀的炭层, 因而改善了阻燃性能。  相似文献   

9.
本文从聚合物材料的燃烧特点出发,分析和讨论了聚合物材料的阻燃特性。实验采用添加无机阻燃剂聚磷酸铵及稀土金属氧化物,提高了硬质聚氨酯泡沫塑料的阻燃性能,并研究了添加型无机阻燃剂与硬质聚氨酯泡沫塑料氧指数的关系,得出了一些规律性结果,这些结果对进一步研究耐燃的硬质聚氨酯泡沫塑料配方有一定的指导意义。  相似文献   

10.
采用聚磷酸铵(APP)为阻燃剂,通过熔融共混,制备阻燃水稻秸秆与阻燃稻壳粉聚丙烯复合材料。通过力学性能、极限氧指数、垂直燃烧、热重分析(TGA)和扫描电镜(SEM)等表征手段研究了材料的力学、阻燃及热降解行为。结果表明:APP与秸秆粉的阻燃效果好于稻壳粉,当添加18%APP时,聚丙烯/秸秆粉复合材料可达到V-0级,氧指数提高了17.5%。对于聚丙烯/稻壳粉体系,APP添加20%时才达到V-0级。TGA与SEM研究表明:APP的添加使复合材料在燃烧过程中形成膨胀的致密炭层是阻燃的主要原因。  相似文献   

11.
为了探究环氧树脂包覆聚磷酸(EP@APP)微胶囊对聚丙烯(PP)的阻燃效果,首先,采用原位聚合法以EP为外壳包覆APP,制备了EP@APP微胶囊,并将其与PP进行复合,制备了EP@APP/PP复合材料。然后,测试了EP@APP微胶囊的溶解性,探讨了工艺参数对溶解性的影响;考察了EP@APP微胶囊的耐水性,并借助红外光谱分析了EP@APP微胶囊的表面官能团。最后,测试了PP复合材料的极限氧指数、拉伸强度和热重曲线,并分析了PP复合材料的热分解动力学。结果表明:当EP的加入量为APP的10wt%、固化剂加入量为EP加入量的15wt%时,采用先于40℃下维持1h、再于70℃下维持1h的阶跃升温方法可制备包覆完全的EP@APP微胶囊;该种微胶囊在水中溶解度低,且具有良好的耐水性。在PP中添加EP@APP微胶囊后,PP复合材料的极限氧指数为35.5%,达到V-0燃烧等级,燃烧后的残炭量增多,成炭效果明显优于直接添加APP的PP复合材料。与APP相比,EP@APP微胶囊对PP拉伸强度的破坏程度明显降低。EP@APP微胶囊的加入使PP复合材料的表观活化能由100.8kJ/mol提高到127.5kJ/mol,改变了PP复合材料的热降解氧化过程,且生成的残炭形成了稳定的保护炭层。研究结果表明EP@APP微胶囊可有效提高PP复合材料的阻燃性能。  相似文献   

12.
In the present study, the effects of carbon fibers (CFs) on flame retardancy, smoke emission, thermal and mechanical properties of thermoplastic polyurethane (TPU)/ammonium polyphosphate (APP) are investigated. The cone calorimeter results show that the combination of 15.00 wt% APP + 5.00 wt% CF greatly lowered peak heat release rate, total heat release, and total smoke release, as well as increased char residue, which is due to a compact char layer formed on the ablating surface of TPU-4 composites, as shown by the SEM results. Smoke suppression properties investigated by smoke density test demonstrate that CF combined with APP greatly reduced the smoke emission. The TPU composite containing 5.00 wt% CF has the highest LOI value of all the intumescing composites studied. Meanwhile, the addition of CF also caused enhanced mechanical properties of TPU composites to a certain degree. Thermogravimetric (TG) analysis indicates that CF combined with APP enhanced the high-temperature thermal stability of TPU composites compared with the pristine TPU, due to the increase of the char residue. Thermogravimetric analysis/infrared spectrometry (TG–IR) results demonstrate that CF could catalyze the further decomposition of TPU composites and remarkably reduce the production of aromatic compounds as a smoke precursor, which are the major parts of smoke.  相似文献   

13.
刘喜山  曹博  纪文斐  孙军  张胜 《材料工程》2019,47(6):101-107
通过三聚氰胺改性脲醛树脂包覆的方法来制备阻燃聚苯乙烯泡沫(EPS),阻燃体系以聚磷酸铵为基础,并选用3种二维层状无机物和硼酸锌的复配体系作为协效剂,对比了不同阻燃体系对聚苯乙烯泡沫的阻燃、抑烟和热稳定性的影响。实验结果表明:当膨胀石墨与硼酸锌的添加量为2∶1(质量比),两者总添加量为24phr时,复合材料的极限氧指数可达32.6%,UL-94垂直燃烧测试达V-0等级,烟密度等级降低至27.31;较之添加纯膨胀石墨EPS样品,协效剂硼酸锌的引入,使样品残炭强度由14.3增加到86.1。热失重分析结果表明,协效剂的加入使得样品热稳定性和残炭率均有所上升。从残炭宏观形貌和扫描电镜结果可以看出,硼酸锌的存在,使样品燃烧后残炭更加完整、致密,裂痕与破损明显减少。  相似文献   

14.
采用传统熔体冷却法制备TiO_2掺杂量为0~1.8wt%的TiO_2/SiO_2-Al_2O_3-MgO系玻璃,探讨了不同TiO_2质量分数对玻璃体积密度、弯曲强度、压缩强度、压缩模量和结构稳定性的影响规律。结果发现:当TiO_2含量小于1.5wt%时,TiO_2/SiO_2-Al_2O_3-MgO系玻璃的光学带隙随着TiO_2含量的增加而减小、玻璃结构更加稳定,其体积密度、弯曲强度、压缩强度以及压缩模量均随着TiO_2含量的增加而上升;当TiO_2含量超过1.5wt%后,该玻璃体系的结构稳定性和力学性能均随着TiO_2含量增加而下降;当TiO_2的质量分数为1.5wt%时,玻璃的光学带隙达到最小值为3.75eV,各项力学性能达到最优,其弯曲强度为110.36 MPa、压缩强度为240.18 MPa、压缩模量为115.03GPa。适量TiO_2的掺杂,减少了玻璃网络结构中非桥氧的数量,使孤立的岛状网络单元重新聚合,从而显著提高了玻璃的结构稳定性和力学性能;但过量的TiO_2迫使TiO_2/SiO_2-Al_2O_3-MgO系玻璃结构中的桥氧键断裂生成非桥氧,由此显著降低了其结构稳定性和力学性能。  相似文献   

15.
利用自制的四苯基双酚A二磷酸酯(BDP)及其复配体系制备了阻燃ABS,研究了阻燃ABS的物理机械性能、氧指数(LOI)和垂直燃烧测试性能(UL94)、材料的阻燃性能和烟气释放。试验结果显示:酚醛树脂(NP)的加入可提高BDP阻燃体系的成炭效果,采用BDP/NP=20%/5%的体系阻燃ABS,材料的冲击性能下降了12.00%,LOI达到29.50%,UL94阻燃性能达到V-0级,av-HRR和pkHRR分别下降了46.40%和40.45%,TTI延长30 s,FGI下降了50.75%,6 min内的SEA上升了31.30%,600℃时成炭率为7.19%;采用BDP/NP/APP=20%/5%/5%时,材料的冲击性能降幅为36.00%,LOI最大可达30.10%,UL94阻燃性能为V-0级,av-HRR和pkHRR最大分别下降50.11%和55.58%,TTI延长35 s,FGI最大降幅为64.32%,6 min内的SEA升幅为20.52%,600℃时成炭率为11.15%;采用BDP/NP/纳米SiO2=20%/5%/7%时,材料的冲击性能上升了20.00%,LOI达到31.20%,UL94阻燃性能达到V-0级,av-HRR和pkHRR分别下降了49.45%和58.09%,TTI延长45 s,FGI降幅为68.34%,6 min内av-SEA升幅为13.00%,600℃时成炭率为16.37%,阻燃ABS的综合性能最好。  相似文献   

16.
赵盼盼  李丽萍 《材料导报》2017,31(6):115-119
以聚磷酸铵(APP)和次磷酸铝(AHP)为阻燃剂,马来酸酐接枝聚丙烯(MA-g-PP)为界面相容剂,通过熔融共混制备了聚丙烯(PP)/木粉(WF)复合材料。采用UL-94垂直燃烧、氧指数(LOI)、热重分析(TGA)探究了阻燃PP/WF复合材料的阻燃性和热分解过程。实验表明,当APP与AHP质量比为9∶1时,LOI值为28.3%,垂直燃烧UL-94达到V-0级。TGA和DTG测试表明,APP与AHP复配能降低木纤维的分解温度,使复合材料提前成炭,达到阻燃作用;加入APP与AHP的PP/WF复合材料的成炭率提高了141%,其高温稳定性也得到提高。通过SEM观察到,当m(APP)∶m(AHP)=9∶1时,木塑复合材料可形成致密的炭层,具有更好的隔热、隔氧作用,从而提高了阻燃性。结果表明在聚磷酸铵中加入少量的协效剂次磷酸铝可明显提高PP/WF复合材料的阻燃性。  相似文献   

17.
以空心玻璃微珠(HGM)为添加剂,采用一步法全水发泡制备了一系列HGM/硬质聚氨酯泡沫(RPUF)复合材料。通过SEM、TG、极限氧指数(LOI)和水平燃烧,研究了HGM/RPUF复合材料的泡孔结构、炭层形貌、热稳定性及阻燃性能。采用万能材料试验机测试了HGM/RPUF复合材料的压缩强度和压缩弹性模量。采用热重-傅里叶红外光谱(TG-FTIR)研究了HGM/RPUF复合材料燃烧过程中的气相产物。研究表明,HGM有成核剂作用,可以缩小HGM/RPUF复合材料泡孔孔径。HGM在燃烧过程中迁移到炭层表面,促进形成致密厚实的炭层。当加入5.4wt% HGM时,HGM/RPUF复合材料的压缩强度及压缩弹性模量分别提高至0.14 MPa和4.53 MPa,相对RPUF,分别提高了37.30%和67.16%。同时发现,HGM能明显抑制HGM/RPUF复合材料在燃烧过程中CO的释放,有效提高了其火灾安全性。   相似文献   

18.
目的 制作和表征基于明胶的生物基可堆肥降解泡沫材料,并应用于包装领域。方法 明胶泡沫通过机械发泡和在周围环境中干燥制成。研究明胶含量、表面活性剂含量以及发泡温度对泡沫最大发泡倍率(MER)、收缩、密度、结构以及压缩性能的影响。此外,研究不同明胶含量样品的导热率。结果 研究的3个因素对泡沫性能和结构有显著影响。MER值和收缩是黏度相关,并极大地影响泡沫密度、力学性能以及热导率。增加明胶含量制造出了密度和压缩强度更高的泡沫(由于MER值更低)。表面活性剂质量分数从0.75%增加到1.5%由于发泡性提升造成泡沫密度轻微下降。然而,进一步将表面活性剂质量分数提升至3%造成黏度显著增加、MER值下降,从而导致泡沫密度增加。更高的发泡温度可以得到更高的MER,但是由于液态泡沫稳定时间更长,收缩程度更大,泡沫密度更大。结论 明胶泡沫展现出作为低密度传统塑料泡沫(密度小于30 kg/m3)环保替代品极具潜力的性能。研究成功实现了明胶泡沫的低热导率〔0.038~0.039 W/(m.K)〕和相对较低的收缩程度。  相似文献   

19.
In present research polylactic acid (PLA) biocomposites were prepared from PLA and kenaf fiber using dry blending, twin screw extrusion and compression molding techniques. PLA was blended with kenaf core fiber, polyethylene glycol (PEG) and ammonium polyphosphate (APP). Kenaf fiber was treated with 3%, 6% and 9% NaOH solution separately. Both raw and treated kenaf along with 10, 15 and 20 phr APP was utilized during composite preparation. The effects of APP content and alkali treatment on flammability, thermal and mechanical properties of kenaf fiber filled PLA biocomposites were investigated. APP is shown to be very effective in improving flame retardancy properties according to limiting oxygen index measurement due to increased char residue at high temperatures. However addition of APP decreased the compatibility between PLA and kenaf fiber, resulting in significant reduction of the mechanical properties of PLA biocomposites. Thermogravimetric analysis (TGA) showed that NaOH treatment improved the thermal stability of PLA biocomposites and decreased carbonaceous char formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号