首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
激光合金化熔池成分均匀性与形状系数的关系SCIEI   总被引:4,自引:0,他引:4  
本文研究了激光工艺参数对镀Cr中碳低合金钢激光合金化熔池形状系数及成分均匀性的影响。实验结果表明,熔池成分均匀性取决于其截面形状系数,后者是光束功率密度和交互作用时间的函数。在功率密度一定时,形状系数与交互作用时间成线性关系。当形状系数为1.6—3.0时,可以获得成分均匀的熔池。  相似文献   

2.
A single-phase problem is solved rather than a multiphase problem for numerical simplicity: and the solution is based on the assumption that the region of gas or plasma can be treated as a void because solid or liquid steel has a greater density level than gas or plasma. The volume-of-fluid method, which can calculate the free surface shape of the keyhole, is used in conjunction with a ray-tracing algorithm to estimate the multiple reflections. Fresnel's reflection model is simplified by the Hagen-Rubens relation for handling a laser beam interaction with materials. Factors considered in the simulations include buoyancy force, Marangoni force and recoil pressure; furthermore, pore generation is simulated by means of an adiabatic bubble model, which can also lead to the phenomenon of a keyhole collapse. Models of the shear stress on the keyhole surface and of the heat transfer to the molten pool via a plasma plume are introduced in simulations of the weld pool dynamics. Analysis of the temperature profile characteristics of the weld bead and molten pool flow in the molten pool is based on the results of the numerical simulations. The simulation results are used to estimate the weld fusion zone shape; and the results of the simulated fusion zone formation are compared with the results of the experimental fusion zone formation and found to be in good agreement. The effects of laser beam profile (Gaussian vs. measured), vapor shear stress, vapor heat source and sulfur content on the molten pool behavior and fusion zone shape are analyzed.  相似文献   

3.
研究了连续波Nd:YAG激光焊接功率、速度、离焦量和侧吹保护气流量对激光深熔焊接K418与42CrMo异种金属焊缝形貌、焊缝熔深的影响,讨论了焊缝区热裂纹产生机制.结果表明,额定功率为3 kW的Nd:YAG激光深熔焊接K418与42CrMo异种金属,由于它们的物理化学性质的差异,焊缝靠近42CrMo侧易出现未熔合;激光光斑向42CrMo侧偏移可以减少焊缝靠近42CrMo侧未熔合量;通过优化侧吹保护气流量和离焦量可以增加熔深.由于K418液态金属的流动性差,导致焊缝靠近K418侧对流传热不充分,使焊缝靠近K418侧熔合线呈现锯齿形.焊缝区热裂纹的产生主要是由于焊缝区元素偏析形成的低熔物导致.  相似文献   

4.
This paper presents experimental investigation of laser beam welding of martensitic stainless steels in a constrained overlap configuration. Experimental studies were focused on the effects of laser power, welding speed and fiber diameter on bead geometry and mechanical properties of the weld. Metallurgical study of a selected welded joint was done only to show various microstructures typically formed at different zones. Laser power and welding speed were found the most significant factors affecting the weld geometry and shearing force. The contour plots showing constant response lines indicated the evidence of two-factor interaction effects of laser power-welding speed, welding speed-fiber diameter, and fiber diameter-laser power on all the responses except the weld width. Moreover, energy density plots illustrated its linear relationship with penetration depth and limited nonlinear effects on others. Additionally, metallurgical analysis of fusion zone showed dendritic structures consisted of martensitic with eutectic ferrite along solidification grain and subgrain boundaries.  相似文献   

5.
采用激光选区熔化(SLM)工艺成形Cu6Al Ni Sn In Ce仿金合金,研究不同SLM工艺参数组合对试样成形质量及其组织和性能的影响。结果表明,根据SLM成形试样的形貌特征可将激光功率和扫描速度的影响直观地划分为六个区域,分别是过熔区、完全熔化区、球化区、部分熔化区、严重球化区和未成形区。在完全熔化区时,激光能量密度达到156J/mm3,仿金粉末在该参数区域完全熔化且熔池保持稳定的状态,试样密度较高、表面质量较好,表面粗糙度为9.2μm;SLM试样由基体α-Cu(Al Ni)相和弥散分布在基体中的析出δ-Cu41Sn11相组成;SLM试样的抗变形能力、显微硬度和耐腐蚀性能均优于铸造试样。  相似文献   

6.
The non-uniformity of electroformed layers directly affects the mechanical properties and application requirements of micro devices. Therefore, uniformity of electroformed copper foil is significant in ensuring or improving the mechanical properties of micro devices. The influences of duty cycle, current density, power source, and electroforming time on the thickness uniformity of electroformed copper layers were studied, and these parameters were optimised by using the orthogonal experiment method. The thickness distribution rule of electroformed copper foil was also determined. Duty cycle had the largest influence on the uniformity; the uniformity of electroformed layers prepared with pulse reverse current power source was superior to those prepared with direct current power source and pulse current power source. Increasing current density enhanced uniformity. The optimal technical process suggested by this orthogonal experiment adopts pulse reverse current power, 30% of positive duty cycle, 10% of negative duty cycle, 2?A?dm?2 of current density, and 92?minutes of electroforming time. The minimum coefficient of variation reached 1.54%. The thickness of electroformed copper foil varied directionally.  相似文献   

7.
热输入对6A02铝合金光纤激光焊缝成形的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
许飞  陈俐  芦伟  郭路云 《焊接学报》2017,38(8):119-123
采用大功率密度的光纤激光对1.0 mm厚的6A02铝合金进行了激光焊接,着重研究了焊接热输入对焊缝宏观形貌、组织和性能的影响. 结果表明,采用高速焊接且热输入控制在8~22 J/mm范围内可以获得稳定全熔透焊缝. 典型的光纤激光焊缝横截面常呈近X形,此种形貌的焊接温度场不均匀性较小,有利于减少焊接失稳和变形. 从熔合线至焊缝中心,显微组织逐渐从柱状晶组织向混合组织(柱状晶+等轴晶)转变. 随焊接热输入的降低,焊缝区的显微组织相对细化,接头熔合线附近的软化现象逐渐减弱,焊缝区显微硬度和接头抗拉强度均略有增加.  相似文献   

8.
Titanium alloy Ti6Al4V and lead metal were welded using a continuous wave Nd:YAG laser. The influences of laser power, scanning velocity, and laser beam offset on weld morphology were investigated. Microstructure, chemical composition and mechanical properties of the joints were evaluated. Experimental results showed that fusion weld formed at the upper part of the weld and brazing weld with solder of Pb formed at the lower part of the weld under appropriate process condition. Interfaces were formed between mixed fusion zone and liquid lead zone in molten pool during laser welding of Ti6Al4V and lead. Reasons for interface formation may be different driving force of various regions in molten pool, and the miscibility gap of Ti and Pb binary system. Ti-Pb intermetallic compound Ti4Pb was detected at the fusion weld zone, which made the microhardness of the weld seam was higher than that of the base materials. The strength of the joint was at least equal to or larger than that of lead base material.  相似文献   

9.
Direct laser melting (DLM) technology can be applied to restore damaged steel dies. To understand the effects of DLM process parameters such as the laser power and scan rate, a series of experiments was conducted to determine the optimal operating parameters. To investigate the laser melting characteristics, the depth/height ratio, depth/width ratio and micro-hardness as a function of the laser energy density were analyzed. Fe-Cr and Fe-Ni layers were deposited on a steel die with 11.38 J/mm2 of energy input. The wear-resistance and the friction coefficient of the deposited layer were investigated by a pin-on-disk test. The penetration depth decreased as the scan rate increased as a consequence of the shorter interaction time. The depth/height ratio of the deposited layer decreased with an increase in the scan rate. The depth/width ratio increased as laser power increased and the scan rate decreased. The deposition shape of the Fe-Ni powder was relatively shallow and wide compared with that of the Fe-Cr powder. The scan rate had a substantial effect upon the deposition height, with the Fe-Cr powder melting more than the Fe-Ni powder. The micro-hardness of the layer melted from the powders is higher than that of the substrate, and the hardness of the laser-surface-melted layer without any metal powder is higher compared to that of the metal-powder-melted layer. The direct laser melting process with Fe-Ni powder represents a superior method when restoring a steel die when the bead shape and hardness of the restored surface are important outcome considerations.  相似文献   

10.
基于铝合金和镀锌钢在熔点上的差异,以ER4043(AlSi5)为填充材料,采用大光斑Nd:YAG激光+MIG电弧复合热源焊接工艺实现两者的熔-钎焊接,研究熔钎焊接头组织和性能。铝合金/镀锌钢板熔钎焊接头分为熔焊接头和钎焊缝两部分,熔焊缝组织由α(Al)等轴晶和晶界上短棒状的Al-Si共晶组织组成,焊趾处的富锌区为α-Al-Zn固溶体和Al-Zn共晶组织。钎焊缝为Fe-Al金属间化合物层,厚度为2~4μm,金属间化合物包括FeAl2、Fe2Al5和Fe4Al13,其中FeAl2和Fe2Al5位于近钢侧的紧密层,而Fe4Al13则呈舌状或锯齿状向熔焊缝内生长。接头抗拉强度随着焊接电流和激光功率的增大呈先增大后减小的趋势,最高可达247.3 MPa。拉伸断裂位置一般位于熔焊缝的熔合区,为以韧性断裂为主的混合断裂。接头内硬度的最大值位于钎焊缝处,然后分别沿着两侧钢板和铝合金熔焊缝逐步降低。  相似文献   

11.
动车组车轴增材再制造材料选择和性能评价   总被引:1,自引:0,他引:1  
侯有忠  齐先胜  邓鸿剑  李世亮  牛富杰 《表面技术》2020,49(12):162-169, 219
目的 选择最佳材料用于动车组车轴的再制造,以符合车轴的力学性能及轮对压装技术要求。方法 以激光熔覆技术作为增材再制造技术工艺方法,选择不同化学成分的合金材料,通过熔覆金属的力学性能、线膨胀系数、过渡熔合区成分、稀释区组织以及硬度突变情况对比分析,确定最佳车轴再制造材料。对所选材料激光熔覆试件的宏观组织、微观组织、化学成分、硬度、力学性能进行检测,并开展轮对压装试验,通过光学显微镜、扫描电镜、纳米压痕法进行分析。结果 Schaeffler组分图预测Fe310、Fe314的激光熔覆金属熔合过渡区组织为奥氏体A+铁素体F组织,但是实际过渡区的硬度值高于600HV,说明有硬质马氏体相析出,而Fe310和NiCrMo合金的熔合区硬度值未发生突变,Fe310的力学性能略低于EA4T钢,且线膨胀系数与基体差距较大,因此不适用于车轴的再制造。选择NiCrMo合金作为车轴再制造增材材料,其熔覆金属的抗拉强度为790 MPa,屈服强度为542 MPa,冲击韧性为68 J/KU5,且具有相近的线膨胀系数。另外,NiCrMo合金纳米压痕的压缩弹性模量Er为180~185 GPa,与基体EA4T钢(185~190 GPa)相近,最终经再制造车轴的轮轴压装试验,其压装曲线的最大压装力在680~1160 kN范围内,曲线也符合标准要求。结论 选择NiCrMo合金作为动车组车轴再制造激光熔覆材料,其热膨胀系数、力学性能以及压缩弹性模量与基体EA4T钢相近,且激光熔覆金属过渡区域无脆硬的马氏体组织产生,并通过了轮对的压装试验,满足动车组压装曲线要求。  相似文献   

12.
This paper investigates laser beam welding of dissimilar AISI 304L and AISI 430 stainless steels. Experimental studies were focused on effects of laser power, welding speed, defocus distance, beam incident angle, and line energy on weld bead geometry and shearing force. Metallurgical analysis was conducted on a selected weld only to show various microstructures typically formed at different zones and consequent change in microhardness. Laser power and welding speed were the most significant factors affecting weld geometry and shearing force. All the bead characteristics but radial penetration depth decreased with increased beam incident angle. The focused beam allowed selecting lower laser power and faster welding speed to obtain the same weld geometry. Weld shape factor increased rapidly due to keyhole formation for line energy input ranging from 15 kJ/m to 17 kJ/m. Fusion zone microstructures contained a variety of complex austenite-ferrite structures. Local microhardness of fusion zone was greater than that of both base metals.  相似文献   

13.
文中研究了快速凝固Ni51Ti49形状记忆合金条(厚度1 mm)的激光焊接工艺,以及焊缝成形、接头显微组织演变、硬度分布和马氏体相变行为. 结果表明,激光功率和焊接速度对焊缝成形有显著影响,采用激光功率为700 W、焊接速度为8 mm/s的焊接工艺实现焊缝区完全熔透,并获得熔合面积适中、缺陷较少的高质量接头;激光焊接导致接头各区域呈现显著的组织不均匀性,其中母材区保留快速凝固工艺的细晶、强织构显微组织特征,热影响区为粗大等轴晶和柱状晶构成的混合晶组织,焊缝中心区为粗大的柱状晶. 激光焊接后热影响区和熔合区的维氏硬度相对母材有显著降低,其中熔合区的平均硬度最低,其值为311 HV ± 14 HV. 接头经500 ℃保温1 h无应力时效处理后,接头各区域组织的相变行为明显不同,其中冷却过程中母材区发生常规两步马氏体相变(B2–R–B19′),而焊缝区呈现多步马氏体相变行为,即先发生一步B2–R相变,随后发生两个独立的R–B19′相变.  相似文献   

14.
The laser treatment processes are specified due to the laser-matter interaction instabilities. Modern additive manufacturing technologies such as selective laser melting provide layer-by-layer part growth with continuous operation for hours and days but without adequate controlling systems at present. In this paper, a method for determining a temperature in the laser action zone during the process based on a study of microscopic structure, phase and element analyses of the processed material is proposed. A fixed point corresponding to melting temperature was acquired, and the corresponding emissivity coefficient was calculated with the assumption of its wavelength and temperature independence. The experimental data were corroborated with good agreement with mathematical calculations. The obtained results reveal an impact of scanning speed and of laser emission power on temperature in molten zone, which presents interest for optimization of laser-processing technologies and more specifically selective laser melting process parameters.  相似文献   

15.
In this paper, the effect of laser cladding process parameters on TiC morphology is studied. Results show that laser parameters play a crucial role in morphology of TiC. Dendritic or spherical TiC particles with different distribution are observed depending on applied laser parameters. Two combined parameters, effective energy and powder deposition density, are used in order to study the effect of laser process parameters on TiC morphology.A series of experiments are conducted in constant laser power and scan speed, constant effective energy and constant powder deposition density in order to study the TiC morphologies. Results show that both combined parameters and laser parameters should be considered in order to interpret the results. Laser parameters have crucial role in establishing the TiC morphologies by means of temperature and chemical composition.Hardness results of the clad zone depend on morphologies and distributions of TiC particles in the clad.  相似文献   

16.
选用齿科烤瓷用NiCr合金和支架用CoCr合金,利用脉冲Nd-YAG激光,在不同电压下进行焊接,考察焊件力学性能,优选电压条件,研究此条件下焊件熔焊区及其附近区域化学成分、显微组织变化规律.结果表明,适合齿科临床应用焊接电压为280V,此条件下可以得到显微组织致密、细小的熔焊区,熔焊区与两侧母材呈冶金结合,主要成分为Ni元素,以固溶体和化合物形式存在;Co、Cr元素部分溶入固溶体,部分与Mo、Be形成化合物.焊接中冶金过程充分,无新相生成.双向侧吹氩气可以对熔焊区起到良好的保护作用,无氧化物形成.  相似文献   

17.
Loss of nitrogen is a concern when welding nitrogen strengthened stainless steel alloys. Building on the current understanding of the underlying mechanisms, a three-dimensional simulation of conduction mode laser weld pool development using the volume of fluid technique was developed. Weld pools formed by a moving Gaussian heat input for two different laser power densities were simulated and the transport and surface desorption of nitrogen was tracked using nitrogen macroparticles. The penetration depth and width of the weld pool predicted by the simulation was comparable to the data derived from macrographs of welds made on nitronic 40 alloy. Additionally, the 25–32% predicted decrease in nitrogen composition of the weld fusion zone by the new rate law is comparable to the literature.  相似文献   

18.
钛合金激光穿透焊的焊缝成形(Ⅰ)   总被引:1,自引:3,他引:1       下载免费PDF全文
姚伟  巩水利  陈俐 《焊接学报》2004,25(4):119-122
在对钛合金激光穿透焊焊缝成形特征分析的基础上研究了激光焊主要工艺参数对焊缝成形的影响 ,同时对比研究了CO2 激光和YAG激光穿透焊时焊缝成形的差异。研究结果表明 ,在穿透焊条件下 ,CO2 激光和YAG激光焊接钛合金焊缝都具有钉形和近X形两种典型的截面形貌。焊缝成形与焊接热输入及激光功率密度有密切联系。随焊接热输入和激光功率密度的增大 ,焊缝截面由钉形向近X形转变。在采用同样工艺规范获得近X形焊缝成形时 ,YAG激光焊缝的对称度显著高于CO2 激光焊缝。通过调整激光功率、焊接速度和离焦量等激光焊工艺参数 ,可以对焊缝成形进行有效控制 ,提高焊接接头质量。  相似文献   

19.
Plasma spray process of hydroxyapatite (Ca10(PO4)6(OH)2, HA) followed by laser treatment of obtained coatings were optimized by an advanced statistical planning of experiments. The full factorial design of 24 experiments was used to find effects of four principal parameters, i.e. electric power, plasma forming gas composition, carrier gas flow rate and laser power density onto microstructure of hydroxyapatite (HA) coatings and powders and depth of laser melted zone. The SAS and Statgraphics commercial softwares have been applied to obtain the mathematical model of influence of process parameters onto experimental responses. The chosen responses were the fraction of HA crystal phase and two phases of its decomposition α-tricalcium phosphate (Ca3(PO4)2, α-TCP), tetracalcium phosphate (Ca4P2O9, TTCP) and, on the other hand, the depth of laser melted zone in the coating. The two most important factors influencing these responses are electric power supplied to torch, laser power density. Laser power density is very important for the depth of laser melted zone. The crystal phase content of powders and coatings was determined using X-ray diffraction (XRD) quantitative analysis. The morphologies of coatings surfaces, cross-sections were characterized using scanning electron microscope (SEM).  相似文献   

20.
采用激光-MIG复合焊对X80管线钢和X100管线钢进行焊接,研究了激光功率对复合焊接头的焊缝形貌、显微组织、硬度、强度和韧性的影响规律.结果表明,激光功率从2.0 k W增大至3.5 k W时,盖面焊缝熔宽和熔深增加,激光区熔深明显增加;激光区焊缝中AF含量增加、LB含量减少,X100侧粗晶热影响区和细晶热影响区中条状贝氏体含量减少,X80侧粗晶热影响区和细晶热影响区中准多边形铁素体含量增加.复合焊接头硬度分布并不对称,最高硬度出现在X100侧熔合区部位.复合焊接头的抗拉强度基本不随激光功率变化,拉伸试样断裂位置均为X80侧母材.随着激光功率增大,焊接接头最高硬度和韧性均下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号