首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of cube textured Ni tapes were oxidized in flowing oxygen at different temperatures. Crystal orientation maps (COMs) of the resulting oxide layers were produced by electron backscatter diffraction. The oxide layers were also analysed by X‐ray diffraction (XRD), scanning electron microscopy and atomic force microscopy (AFM). The oxide grain size of a sample oxidized at 600 °C was similar to that of the substrate and the oxide was highly textured, both indicating epitaxial growth. The orientation relationship between the substrate and the oxide was directly observed from XRD to be (111)NiO//(001)Ni, [01]NiO//[110]Ni with four, equivalent, in‐plane variants. In each variant, the oxide has both <110>‐ and <211>‐type directions parallel to the Ni <110> directions. Differences in oxide thickness and surface roughness on neighbouring grains were revealed by AFM and these were attributed to the existence of a range of oxide growth conditions resulting from small differences in the orientation of each substrate grain. Similar macrotexture and microstructure were observed on a sample oxidized at 1300 °C, but additional, facetted oxide crystals had formed at the oxide grain boundaries. COMs showed that these crystals were either cube or 45° rotated cube orientated, a texture different to that of the large oxide grains. The grain boundary crystals were thought to form by inward diffusion of oxygen at defects in the growing oxide scale.  相似文献   

2.
The microstructural, mechanical, and tribological behaviors of electroplated Ni on Cu conducting substrates have been investigated in this study. The microstructural studies were performed by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The results showed that initially (111) with (220), (200) Ni texture components were predominant in the coating, and increasing the current density from 0.1 to 0.5 A/cm2 led to the development of a strong (111) texture. The presence of ultrafine grains coupled with a (111) Ni texture improved the coating microhardness and wear properties significantly. It was shown that with an increase in current density, wear resistance of the coatings improved significantly and the electrical resistivity increased due to the highly populated grain boundaries.  相似文献   

3.
In‐situ annealing experiments were performed in the scanning electron microscope on a single‐phase Al?0.13Mg alloy cold rolled to different strain levels. Once the validity of the technique had been verified by comparison of the recrystallization kinetics and final grain size with bulk annealed samples, the method was used in combination with electron back‐scattered diffraction (EBSD) to study the potential mechanisms for recrystallization in this alloy. During annealing of material rolled to moderate strains (?t < 0.7), the primary mechanism was strain‐induced boundary migration (SIBM). In material rolled to higher true strains (?t > 1.4), recrystallization occurred extensively along pre‐existing cube bands and EBSD measurements showed that the mean size of cells within the cube bands was larger than for all other orientations measured, suggesting a size advantage was responsible for the strengthening of cube texture during recrystallization. SIBM was shown to occur concurrently with the nucleation along cube bands but this contributed a lower proportion of nucleation sites during recrystallization.  相似文献   

4.
The spatial resolution of electron diffraction within the scanning electron microscope (SEM) has progressed from channelling methods capable of measuring crystallographic characteristics from 10 μm regions to electron backscatter diffraction (EBSD) methods capable of measuring 120 nm particles. Here, we report a new form of low‐energy transmission Kikuchi diffraction, performed in the SEM. Transmission‐EBSD (t‐EBSD) makes use of an EBSD detector and software to capture and analyse the angular intensity variation in large‐angle forward scattering of electrons in transmission, without postspecimen coils. We collected t‐EBSD patterns from Fe–Co nanoparticles of diameter 10 nm and from 40 nm‐thick Ni films with in‐plane grain size 15 nm. The patterns exhibited contrast similar to that seen in EBSD, but are formed in transmission. Monte Carlo scattering simulations showed that in addition to the order of magnitude improvement in spatial resolution from isolated particles, the energy width of the scattered electrons in t‐EBSD is nearly two orders of magnitude narrower than that of conventional EBSD. This new low‐energy transmission diffraction approach builds upon recent progress in achieving unprecedented levels of imaging resolution for materials characterization in the SEM by adding high‐spatial‐resolution analytical capabilities.  相似文献   

5.
This paper reports, for the first time, the use of electron backscattered diffraction (EBSD) to study orientation in sintered NdFeB type magnets. The magnetic properties of NdFeB magnets are greatly improved if a strong crystallographic texture is firstly achieved, namely, the direction of the c‐axis is along the direction of magnetization. A systematic survey of sample preparation techniques showed that samples that were mechanically polished and then etched gave the most reliable EBSD data. Analyses were made using both fully automated EBSD scans and by EBSD measurements taken after manual movement of the beam. The EBSD results are presented as secondary electron SEM micrographs, orientation images and 001 pole figures. For the selection of grains investigated, the deviation of the c‐axis was shown to be between 10° and 30° from the ideal [001]//magnetization direction. It is demonstrated that EBSD is a valuable tool for characterizing the microstructure and texture relationships and for assessing the performance of the processing routes of NdFeB magnets.  相似文献   

6.
Cu2O thin film and a transparent bilayer have been fabricated by electrodeposition method. The growths were obtained in potentiostatic mode with gradual degradation of anodic current. X‐ray diffraction (XRD) study showed that the bilayer is polycrystalline and it possesses mixture of different crystallite phases of copper oxides. Surface morphology of the films was investigated by scanning electron microscopy (SEM). The SEM images revealed that the films were uniformly distributed and the starting material (Cu2O) had cubical structure. Grains agglomeration and crystallinity were enhanced by annealing. Optical studies indicated that all the samples have direct allowed transition. Energy band gap of the bilayer film was reduced by annealing treatment thus corroborating quantum confinement upshot.  相似文献   

7.
纯铝单向压缩过程的晶体塑性有限元模拟   总被引:1,自引:0,他引:1  
在率相关晶体塑性理论框架下,分别将Taylor模型和有限单元模型两种多晶模型嵌入有限元程序ABAQUS中,实现了纯铝单向压缩过程的晶体塑性有限元模拟。直接将电子背散射衍射(EBSD)获取的晶粒初始取向输入UMAT子程序,预测了单向压缩1050纯铝过程的力学响应与变形织构演化。结果表明:模拟力学响应结果与试验结果有较好的一致性,同时也存在一定偏差。随着真应变的增加,压缩丝织构(〈110〉织构)趋于锋锐,模拟结果与EBSD试验测得的织构演化结果能较好地吻合。  相似文献   

8.
This paper presents a few examples of the application of electron back-scatter diffraction (EBSD) to solidification problems. For directionally solidified Al–Zn samples, this technique could reveal the change in dendrite growth directions from <100> to <110> as the composition of zinc increases from 5 to 90 wt%. The corresponding texture evolution and grain selection mechanisms were also examined. Twinned dendrites that form under certain solidification conditions in Al–X specimens (with X = Zn, Mg, Ni, Cu) were clearly identified as <110> dendrite trunks split in their centre by a (111) twin plane. In Zn–0.2 wt% Al hot-dip galvanized coatings on steel sheets, EBSD clearly revealed the preferential basal orientation distribution of the nuclei as well as the reinforcement of this distribution by the faster growth of <10 1 0> dendrites. Moreover, in Al–Zn–Si coatings, misorientations as large as 10° mm−1 have been measured within individual grains. Finally, the complex band and lamellae microstructures that form in the Cu–Sn peritectic system at low growth rate could be shown to constitute a continuous network initiated from a single nucleus. EBSD also showed that the α and β phases had a Kurdjumov–Sachs crystallographic relationship.  相似文献   

9.
通过采用辅助增强磁控溅射方法,研究了在硬质合金刀片上制备TiN—TiN/CrN—CrN薄膜的工艺方法。利用SEM、XRD等方法分析了Cr靶溅射电流、N2气量的变化对TiN—TiN/CrN—CrN膜的表面形貌及结构和织构影响,采用断续切削试验方法研究了TiN—TiN/CrN—CrN涂层刀片的耐磨性及抗剥落性,得出了一种TiN—TiN/CrN—CrN薄膜工业化制备方法。  相似文献   

10.
采用X射线衍射技术和TEM观测探讨了冷轧变形量对激光毛化1050铝合金在热处理前后组织及织构的影响。结果表明,低变形量下的毛化辊轧制样品中除了Cu{112}<111>、Bs{110}<112>和S{123}<634>织构组分外,还有Rot.Cube{001}<110>织构形成。随变形量的增加,Rot.Cube织构逐渐减弱,Cu、Bs、S织构组分逐渐增强。经400℃退火后,样品发生了再结晶,但在样品中仍有部分轧制织构存在,立方织构含量随变形量增加先增加后降低。  相似文献   

11.
This paper analyses the three‐dimensional (3‐D) surface texture of growing diamond nanocrystals on Au thin films as catalyst on p‐type Si substrate using hot filament chemical vapour deposition (HFCVD). Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), Raman, X‐ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were applied also to characterize the 3‐D surface texture data in connection with the statistical, and fractal analyses. This type of 3‐D morphology allows a deeper understanding of structure/property relationships and surface defects in prepared samples. Our results indicate a promising way for preparing high‐quality diamond nanocrystals on Au thin films as catalyst on p‐type Si substrate via HFCVD method.  相似文献   

12.
Characterization of microstructures containing small grains or low-angle grain boundaries by electron backscattered diffraction (EBSD) is limited by the spatial and angular resolution limits of the technique. It was found that the best effective spatial resolution (60 nm) for aluminium alloys in a tungsten-filament scanning electron microscope (SEM) was obtained for an intermediate probe current which provided a compromise between pattern quality and specimen interaction volume. The same specimens and EBSD equipment when used with a field-emission gun SEM showed an improvement in spatial resolution by a factor of 2–3. For characterizing low-angle boundary microstructures, the precision of determining relative orientations is a limiting factor. It was found that the orientation noise was directly related to the probe current and this was interpreted in terms of the effect of probe current on the quality of the diffraction patterns.  相似文献   

13.
A three‐dimensional Hough transform is designed for the detection of conic curves (hyperbolae and ellipses) formed by the gnomonic projection of diffraction Kossel cones. This new procedure is applied to a high‐angular‐accuracy analysis of electron backscatter diffraction (EBSD) patterns and to a fully automatic indexing of X‐ray Kossel patterns in the SEM. The high‐accuracy analysis of EBSD patterns allows for the determination of local elastic strains, without any reference pattern, and with a spatial resolution of a few tens of nanometres. An accuracy of 2 × 10?4 is achieved on geometrically calculated diagrams. This paper presents also the first fully automatic indexing of Kossel patterns. This automatic indexing procedure can be applied to local texture analysis, as well as to local elastic strain measurements. Although the spatial resolution of Kossel is about 1 μm, the accuracy of strain measurement is in this case much higher than that presently obtained on EBSD.  相似文献   

14.
Ji Y  Wang L  Zhang Y  Wei B  Wang J  Cheng Y  Suo H 《Ultramicroscopy》2011,111(5):314-319
Electron backscatter diffraction (EBSD) was used for distinguishing crystallographic orientations and local lattice misfits of a La2Zr2O7 (LZO) buffer layer epitaxially grown on a cube textured Ni-5.%W (Ni-W) substrate for a YBCO superconductor film. Orientation data were obtained from the LZO epilayer using low energy primary electrons (5 keV) and from the Ni-W substrate by increasing the voltage to 15 keV. In-plane and out-of-plane orientations of the LZO epilayer were revealed with respect to its Ni-W substrate. A strong {1 0 0} 〈0 1 1〉 rotated-cube texture in the LZO epilayer was formed on the {1 0 0} 〈0 0 1〉 cube-textured Ni-W substrates. LZO and Ni in-plane crystallographic axes are related by an expected 45° rotation. The step-misorientations and the local misfit strains between the LZO epilayer and the substrate were also analyzed.  相似文献   

15.
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys.  相似文献   

16.
17.
CeO2 thin films doped with neodymium oxides for application to gas sensors have been elaborated by the pulsed laser deposition technique. The films were deposited on orientated Si (100) substrates with variable deposition times (t = 90, 180 and 360 s) and molar fractions of Nd2O3 (0, 6.5, 15, 21.5 and 27 at.%). The resulting Nd–CeO2 thin films were characterized by means of X‐ray diffraction analysis, scanning electron microscopy and transmission electron microscopy equipped with EDS (Energy Dispersive Spectrometer) microanalysis. From X‐ray diffraction analyses, it is clearly established that the texture is modified by Nd additions. The preferred (111) orientations of the CeO2 crystals change into the (200) orientation. The morphology of the CeO2 grains changes from triangles, for pure CeO2 thin films, to spherical grains for Nd‐doped films. In addition, cell parameter analyses from X‐ray diffraction data show that a partial chemical substitution of Ce by Nd should occur in the face‐centred cubic lattice of ceria: this should give rise to Ce1‐xNdxO2?z phases with oxygen non‐stoichiometry.  相似文献   

18.
Automated electron backscatter diffraction (EBSD) techniques have been used to characterize the microstructures of thin films for the past decade or so. The recent change in strategy from an aluminum‐based interconnect structure in integrated circuits to one based on copper has necessitated the development of new fabrication procedures. Along with new processes, complete characterization of the microstructures is imperative for improving manufacturability of the Cu interconnect lines and in‐service reliability. Electron backscatter diffraction has been adopted as an important characterization tool in this effort. Cu microstructures vary dramatically as a function of processing conditions, including electroplating bath chemistry, sublayer material, stacking sequence of sublayers, annealing conditions, and line widths and depths. Crystallographic textures and grain size and grain boundary character distributions, all of which may influence manufacturability and reliability of interconnect lines, are ideally characterized using EBSD. The present discussion presents some results showing structural dependence upon processing parameters. In addition, the authors identify an in‐plane orientation preference in inlaid Cu lines {111} normal to the line surface and 〈110〉 aligned with the line direction. This relationship tends to strengthen as the line width decreases.  相似文献   

19.
A focused ion beam was employed for local target preparation for EBSD analysis. The volume of the ion‐solid interaction is well below 50 nm at glancing incidence for metallic and transition metal oxide samples. Therefore, focused ion beam can successfully be used for electron backscatter diffraction (EBSD) sample preparation. The sample investigated consists of Ni covered with a NiO layer of ~5 μm thickness. Focused ion beam cross‐sectioning of these layers and subsequent electron imaging in addition to EBSD maps shows a bimodal structure of the oxide layer. In order to test the potential of such oxidized samples as electrode materials, single spark erosion experiments were performed. The erosion craters have diameters up to 40 μm and have a depth corresponding to the thickness of the oxide layer. In addition, a deformation zone produced by thermoshock accompanies the formation of the crater. This deformation zone was further investigated by EBSD analysis using a new way of sample preparation employing the focused ion beam technology. This target preparation routine is called Volume of Interest Transfer and has the potential of providing a full three‐dimensional characterization.  相似文献   

20.
用改进的溶胶-凝胶法在Pt(111)/Ti/SiO2/Si(100)衬底上制备了不同厚度的高度(111)取向的Pb(Zr0.53Ti0.47)O3薄膜.运用X射线衍射(XRD)和原子力显微镜(AFM)分析了薄膜的微结构,原子力显微镜表明厚度为0.3μm和0.56μm的PZT薄膜的晶粒尺寸和表面粗糙度分别为0.2~0.3μm、2~3μm和0.92nm、34nm.0.3μm和0.56μm PZT薄膜的剩余极化(Pr)和矫顽场(Ec)分别为32.2μC/2、79.9kV/cm, 27.7μC/cm2、54.4kV/cm;在频率100KHz时,薄膜的介电常数和介电损耗分别为539、0.066,821、0.029.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号