首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以纳米TiN和亚微米SiC粉体为原料,采用湿法球磨和喷雾干燥技术制备了均匀分布的SiC/TiN(np)纳米复合粉体,并通过无压烧结工艺制备出SiC/TiN(np)纳米复合陶瓷,研究了纳米TiN颗粒对SiC材料显微结构和力学性能的影响.研究结果表明:纳米TiN的引入抑制了SiC晶粒的生长,材料的断裂方式以沿晶断裂为主,裂纹产生偏转和分叉,使材料的抗弯强度、硬度和断裂韧性分别达到557 MPa、21 GPa和6.6 MP·am0.5.  相似文献   

2.
以h-BN、ZrO_2、SiC粉体为原料,添加8%(质量分数,下同)的A_2O_3-Y_2O_3为烧结助剂,采用放电等离子烧结技术快速制备了h-BN-ZrO_2-SiC复相陶瓷,研究了纳米SiC颗粒添加量对h-BN-ZrO_2-SiC复相陶瓷的致密化、显微结构及力学性能的影响。结果表明:添加纳米SiC颗粒能有效促进h-BN-ZrO_2-SiC复相陶瓷的烧结和提高其致密度,复相陶瓷的力学性能随SiC添加量的增大而增大,特别是弹性模量的增加比较显著。在添加25%的纳米SiC时复相陶瓷的力学性能较好,此时复相陶瓷的断裂韧性、抗弯强度和弹性模量分别达到3.24 MPa·m~(1/2)、268.4 MPa和115 GPa。其原因主要是由于细小的SiC颗粒能较好填充复相陶瓷中的空隙,减少相间由于热失配产生的残余应力,增大裂纹扩展时断裂能的消耗,起到晶界钉扎和弥散强化作用,这均有利于复相陶瓷断裂韧性和抗弯强度的提高。  相似文献   

3.
采用沉淀法制备了表面包裹Yb_2O_3的ZrB_2-SiC-Yb_2O_3复合粉体(不同含量的Yb_2O_3作为烧结助剂),并在1900℃无压烧结制备了ZrB_2-SiC-Yb_2O_3复合材料.研究Yb_2O_3添加量对复合材料致密化和性能的影响.结果表明,Yb_2O_3的添加在促进ZrB_2-SiC烧结致密的同时,也提高了ZrB2-SiC复合材料的力学性能.添加10% Yb_2O_3(质量分数, 下同)的ZrB_2-SiC复合材料的相对密度为89%,抗弯曲强度为158 MPa,断裂韧性为2.95 MPa·m~(1/2).  相似文献   

4.
《铸造技术》2016,(4):649-652
以WC和α-Al_2O_3为主要原料,采用真空热压烧结工艺制备机床用WC/Al_2O_3复相陶瓷刀具材料。测试和分析了烧结样品的相对密度、弯曲强度、断裂韧度、硬度值、相组成以及显微结构。结果表明,当WC添加量为75%,微米α-Al_2O_3添加量为25%,烧结温度为1 600℃时,所制备的WC/Al_2O_3复相陶瓷刀具材料性能最佳,相对密度值为99.1%,弯曲强度为706.3 MPa,断裂韧度为8.91 MPa·m1/2,硬度值为19.14 GPa。最佳样品的主晶相为碳化钨(WC)和刚玉(Al_2O_3)。  相似文献   

5.
以Al_4C_3、Ti和石墨粉为原料(Ti、Al、C的摩尔比为6:1:3),利用放电等离子烧结(SPS)技术通过原位反应制备出TiC/Ti_2AlC的复合材料.结果表明,基体相TiC的晶粒尺寸在2~5 μm左右,反应生成的Ti_2AlC颗粒尺度纵向长度为4~10 mm,横向宽度为1~2 mm,且弥散均匀分布在基体中.三元层状相Ti_2AlC的引入大大提高了复合材料的力学性能,复合材料的维氏硬度HV为11 GPa,断裂韧性K_(IC)为5.3 MPa·m~(1/2),抗弯强度sf为(470±50) MPa,弹性模量E为(228±30) GPa.通过压痕法观察了裂纹扩展路径,讨论了材料的断裂机制和增韧机制.材料以沿晶断裂为主,伴随少量穿晶断裂.  相似文献   

6.
以N,N-二甲基甲酰胺(DMF)为分散剂制备不同石墨烯(GNPs)含量的GNPs/3Y-TZP复合粉体,并采用等离子活化烧结工艺制备系列GNPs/3Y-TZP复相陶瓷。研究了GNPs含量对复相陶瓷物相、显微结构的影响;建立了材料显微结构与其断裂韧性的相互关系,讨论了GNPs/3Y-TZP复相陶瓷的增强/增韧机制。结果表明:制备的GNPs/3Y-TZP复相陶瓷均为四方相;当烧结温度为1300℃、GNPs质量分数为0.01%时,其致密度高达99.4%,且GNPs分散均匀,同时断裂韧性达到最大15.3 MPa·m1/2,比3Y-TZP提高了61%,显微硬度为12.94 GPa。GNPs的均匀分散及与3Y-TZP晶粒的紧密结合使得穿晶断裂比例增大,石墨烯的晶粒细化、拔出、裂纹桥联及微裂纹最终促使3Y-TZP陶瓷的断裂韧性大幅提高。  相似文献   

7.
采用真空热压工艺制备了添加纳米ZrO2和微米WC的Ti(C,N)基纳米复合金属陶瓷材料,并研究了材料的力学性能与微观结构。结果表明:在纳米ZrO2添加量为5%、微米WC添加量为9.6%(质量分数,下同)时,Ti(C,N)基纳米复合金属陶瓷材料的综合力学性能较好,抗弯强度为1014MPa,断裂韧性为7.25MPa·m1/2,硬度为15.57GPa,其抗弯强度和断裂韧性比未添加纳米ZrO2与微米WC的Ti(C,N)基金属陶瓷材料分别提高了3.5%和18.1%。材料断裂模式为以穿晶断裂为主的穿晶/沿晶断裂混合模式。"晶内型"纳米结构弥散增韧、纳米ZrO2相变增韧以及裂纹桥联、裂纹偏转是其主要的增韧补强机理。  相似文献   

8.
以富硼碳化硼粉体为原料,采用放电等离子烧结(SPS)制备致密碳化硼陶瓷体,研究了SPS工艺对碳化硼陶瓷结构和性能的影响.结果表明,SPS烧结工艺可以低温快速烧结得到致密度达到99.7%的碳化硼陶瓷体,烧结温度和烧结时间对碳化硼的致密度和晶粒尺寸都有影响.烧结过程中样品晶粒表面产生玻璃相,玻璃相的存在使碳化硼断裂机制由穿晶断裂过渡为沿晶断裂,有助于提高材料断裂强度和断裂韧性.SPS制备的致密碳化硅陶瓷材料具有良好的力学性能,其中致密度达到99.6%,抗弯强度达到550.1 MPa,硬度39.52 GPa.  相似文献   

9.
常压烧结制备了Al_2O_3和20%ZrB_2/Al_2O_3(质量分数)复合陶瓷,用XRD和金相显微镜、SEM分析了其相组成、微观结构、断裂形貌,并用压痕法计算了陶瓷的断裂韧性。结果表明:Al_2O_3陶瓷自1500℃开始其相对密度超过99%,维氏硬度达到18 970 MPa,断裂韧性为(5.2±0.3)MPa·m~(1/2);20%Zr B_2/Al_2O_3复合陶瓷在1450℃时相对密度超过98%,维氏硬度达到18 070 MPa,断裂韧性为(6.7±0.2)MPa·m~(1/2)。微观形貌观察表明,ZrB_2/Al_2O_3复合陶瓷韧性的增加是由于弥散分布的ZrB_2在Al_2O_3陶瓷基体中起到遏制裂纹扩展和钉扎双重作用的结果。  相似文献   

10.
在采用溶胶-凝胶法引入添加剂制备SiC/(Al2O3+Y2O3)复合粉体的基础上,研究了复合粉体的烧结行为、力学性能、YAG分布及相组成.结果表明,溶胶-凝胶法制备的复合材料中YAG相分散均匀、反应完全、烧结致密化温度较低,具有较高的强度和相对体积质量.在1 950℃下真空无压烧结40 min,SiC/YAG陶瓷相对密度为96.8%,抗弯强度为356 MPa,硬度为23 GPa,断裂韧性为4.5 MPa·m1/2.材料的析晶完整,晶体尺寸在0.5 μm~2 μm,呈等柱状,断裂方式为沿晶断裂.  相似文献   

11.
采用SPS工艺制备添加La_2O_3或LaB_6的ZrB_2-SiC陶瓷,测量试样的密度和力学性能,利用扫描电镜和透射电镜观察试样的微观形貌,研究添加镧的不同化合物对ZrB_2-SiC陶瓷显微结构和力学性能的影响,分析添加量对材料力学性能的影响.同时对ZrB_2-SiC-La_2O_3和ZrB_2-SiC-LaB_6陶瓷进行热处理,考察热处理对其力学性能的影响.结果表明,加入2.5%或5%(质量分数, 下同)的La_2O_3或LaB_6添加剂后,材料的室温强度、高温强度、断裂韧性都比无添加剂时要高;当含量相同时,加入LaB_6比La_2O_3更有利于提高陶瓷材料的室温强度;当添加剂的含量为2.5%时,材料的室温强度比较好,当添加剂的含量为5%时,材料的高温强度和断裂韧性比较高.热处理可以提高ZrB_2-SiC-La_2O_3和ZrB_2-SiC-LaB_6陶瓷材料的高温强度.  相似文献   

12.
研究了以氮化铝(AlN)为助烧剂的碳化硅晶片(SiC_(pl))增韧二硼化锆(ZrB_2)复合陶瓷材料的制备工艺,并测定其抗弯强度、断裂韧性、致密度和显微硬度.利用扫描电子显微镜(SEM)观察了样品的表面及断面形貌.复合陶瓷中SiC晶片的添加量分别为5%, 10%, 15%以及20%(体积分数, 下同),AlN作为烧结助剂添加量为3%.结果表明:适量SiC晶片的添加提高了SiC_(pl)/ZrB_2复合陶瓷的烧结致密度;SiC_(pl)/ZrB_2复合陶瓷的力学性能比纯ZrB_2陶瓷有所提高,抗弯强度和维氏硬度在5%SiC晶片添加量时达到最大,分别为(625.34±21.46) MPa和(14.60±0.84) GPa;断裂韧性在15%SiC晶片添加量时达到最大值(8.35 ± 0.26) MPa·m~(1/2).断口形貌观察表明主要增韧机制为裂纹偏转与晶片拔出.  相似文献   

13.
C/C复合材料具有优异的高温力学性能,是航空航天领域最具发展前景的结构材料之一,但在高温含氧环境中的氧化问题严重地限制了其实际应用。涂层技术是提升基体抗氧化能力的有效手段,因ZrB_2-SiC陶瓷涂层具有优异的抗氧化、抗烧蚀、抗热震等性能,非常适合作为C/C复合材料的高温防护涂层。首先,介绍了ZrB_2-SiC陶瓷涂层在氧化和烧蚀过程中组织结构的演变规律,阐明了该涂层的高温防护机理;然后,综述了该涂层的主要制备方法(包埋法、CVD、等离子喷涂)及每种方法的优点与不足,并对不同方法所制备涂层的抗氧化性和抗烧蚀性进行了比较;之后,针对该涂层研究和应用中存在的问题,如涂层致密性差、元素分布不均匀、应用温度范围窄、与基体热匹配性差等,从粉体改性和掺杂改性两方面总结了该涂层的改性研究现状,重点阐述了对ZrB_2-SiC粉末进行喷雾造粒和感应等离子球化处理对于提升等离子喷涂涂层性能的重要意义;最后,从涂层制备、涂层结构设计、涂层改性、涂层性能测试等方面,指出了该涂层体系存在的主要问题和未来的发展方向。  相似文献   

14.
本文采用纳米ZrB2粉体系统研究了ZrB2基超高温陶瓷的放电等离子烧结行为。由于采用纳米粉体,单相ZrB2在1550℃的低温下即发生快速的致密化烧结。ZrB2-SiC陶瓷经1800℃放电等离子烧结后可实现完全致密化,并且材料的弯曲强度高达1078±162 MPa。在1700℃采用放电等离子烧结成功制备了ZrB2-SiC-Cf复合材料,材料断口表现出明显的纤维拔出现象,导致其具有高的断裂韧性值(6.04 MPa·m1/2)和非脆性断裂的模式。同时,ZrB2-SiC-Cf复合材料具有很高的临界热冲击温差(627℃),表明该材料具有优异的抗热冲击性能。  相似文献   

15.
放电等离子烧结ZrB_2-YAG-Al_2O_3复相陶瓷的氧化性能   总被引:2,自引:0,他引:2  
通过共沉淀法获得包覆式Al2O3-Y2O3/ZrB2复合粉体并对其进行放电等离子烧结来提高ZrB2陶瓷的烧结致密度和高温抗氧化能力。研究表明:通过引入YAG-Al2O3制备的陶瓷和纯ZrB2陶瓷相比,在相同氧化条件下得到的氧化层厚度有所变薄,说明通过引入YAG-Al2O3可以改善ZrB2陶瓷的抗氧化性能。在相同氧化条件下,引入Al2O3越多的陶瓷氧化层厚度越小。  相似文献   

16.
用普通反应热压方法(RHP)和反应放电等离子体方法(R-SPS)原位反应制备了ZrB2-SiC,ZrB2-SiC—ZrC,ZrB2-SiC-ZrN,以及ZrB2-SiC-AIN4种复合材料。从密度,物相以及显微结构等方面比较了两种烧结方式之间的差别,对于升温速度较慢的普通热压方法,反应分步进行,显微结构不均匀;对于升温速度快的放电等离子体烧结,原料间的自蔓延反应被点着,反应速度快,显微结构均匀。同时以红外灯的热量为点火源,引发了Zr,Si及B4C间在空气气氛下的自蔓延反应,制备了较纯及粒径约为1μm的活性粉体。  相似文献   

17.
利用粉末冶金方法制备了Al2Ti3V2ZrB/2024Al复合材料,研究了球磨工艺和烧结温度对复合材料微观组织和硬度的影响。结果表明,球磨时过高的球磨速度或过长的球磨时间均会造成Al2Ti3V2ZrB颗粒的团聚,影响复合材料的组织均匀性。在球磨速度为150r/min下球磨5h,Al2Ti3V2ZrB颗粒在2024Al基体中的分布最均匀,复合材料的硬度最高。当烧结温度低于510℃时,Al2Ti3V2ZrB颗粒在2024Al基体中分布比较均匀,复合材料密度和硬度随烧结温度升高逐渐增加;超过510℃后Al2Ti3V2ZrB颗粒开始团聚,复合材料密度和硬度下降,在510℃制备的复合材料具有最高的硬度。  相似文献   

18.
ZrB2具有良好的抗氧化、抗热震和抗烧蚀性能。采用放电等离子体烧结(SPS)工艺,添加体积分数为10%~20%的MoSi2烧结助剂,选取不同的烧结参数,制备出超高温陶瓷成品。经测试,ZrB2-15%MoSi2(体积分数)体系的陶瓷致密度可达99.88%,维氏硬度可达1 612,通过SEM分析,该陶瓷具有典型的核(ZrB2)-壳(MoSi2、MoB)结构,可以作为高超声速飞行器热防护用陶瓷材料的候选方案。  相似文献   

19.
利用热压烧结法,在2400℃烧结温度下,制备了NbMo固溶体(此后记作(Nb,Mo)ss)基陶瓷颗粒增强复合材料。其中,ZrB2陶瓷增强相的体积分数分别为15%,30%,45%和60%。本文研究了在800℃,1000℃和1200℃下,ZrB2含量对复合材料抗氧化性和氧化产物演变的作用。试验结果表明,氧化温度和ZrB2含量均对复合材料的氧化行为有影响。从氧化速率常数角度讲,ZrB2-(Nb,Mo)ss复合材料的抗氧化性随ZrB2含量的增加而提高,随氧化温度的提高而降低。800℃-1000℃的氧化产物中含有膜状Nb2Zr6O17相,能作为屏障阻止氧气向基体扩散,因此在800℃-1000℃时,复合材料氧化速率较低。然而,在1200℃氧化时未发现Nb2Zr6O17相,MoO3的剧烈挥发和ZrO2的体积效应破坏了Nb2Zr6O17保护层,导致了氧化层严重剥落,材料的抗氧化性极差。综上,本文结合观察到的氧化产物形貌,详细阐述了不同ZrB2含量的复合材料在不同温度下的抗氧化机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号