首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(12):8850-8857
Silica sol bonded castables have obvious advantages over low cement or hydratable alumina bonded castables in drying performance and sintering properties for SiC castables. However, they are not widely used due to their weak strength at low temperature. The efficiency of bonding network for silica sol bonded SiC castable in the presence of different reactive micropowder such as SiO2 micropowder and α-Al2O3 micropowder was evaluated through oscillatory tests, sintered properties and microstructural analysis. Results show that the polymerization reaction between SiO2 micropowders enhanced the siloxane network and reinforced the bonding strength, furthermore, the addition of α-Al2O3 micropowder contributed to accelerating the formation of the siloxane network and hardening of the silica sol at lower temperatures and shorter time. Silica sol performed well as a binder agent for SiC castables with an addition content of 3 wt% SiO2 micropowder and 2 wt% α-Al2O3 micropowder, which showed high strength and good workability at room temperature. And Silica sol bonded SiC castable with the above micropowder contents possessed the best mechanical behavior after heat treatment due to combined binding of SiC whiskers and mullite.  相似文献   

2.
The in situ formation of mullite (Al6Si4O13) is a complex process based on solid-state reactions strongly affected by the characteristics of Al2O3 and SiO2 sources. This study investigated the combined effects of variable SiO2/Al2O3 ratios and the presence of low-melting-point impurities on the physical properties and microstructure of in situ alumina-mullite ceramics. Two grades of synthetic amorphous silica, known as microsilica, of similar physical properties and significant differences in the content of alkali-based impurities (0.8 and 3.6 wt%), were combined with thin calcined alumina particles in different proportions (from silica-free up to stoichiometric mullite), pressed and sintered. The samples were tested for total porosity, flexural strength, and pore size distribution, and their crystalline phases and microstructures formed were investigated. Small amounts of both microsilica grades (up to 8.9 wt%) hindered the densification of the alumina-mullite matrix and favored grain growth events, increasing porosity and reducing strength. For samples containing higher microsilica loads (16.4–28.2 wt%), the impurities content significantly affected the amount of liquid phases formed. Such impurities altered the ratio and shape of the pores and the total amount of mullite after sintering. Therefore, different microstructures and levels of flexural strength and total porosity were observed.  相似文献   

3.
The catalytic activity of alumina for the title reaction has been found to be greatly improved by the loading of copper. The addition of copper resulted in lowering the active temperature region, the higher maximum activity, and the enhancement of the reaction rate. The maximum effect was observed at 0.3 wt% of the loading amount of copper. A similar enhancement was also confirmed on SiO2-Al2O3.  相似文献   

4.
In this study, α-Al2O3@amorphous alumina nanocomposite core-shell structure was synthesized from AlCl3 and the commercial α-Al2O3 nanoparticles as the starting materials via a wet chemical route. The results indicated that the shell material mainly comprised of ammonium chloride and boehmite phases. Boehmite was transformed to the amorphous and γ-Al2O3 phases after the calcination process and the shell material was completely converted to γ-Al2O3 at 1000?°C. However, for the α-Al2O3@amorphous alumina core-shell nanoparticles were completely converted to α-Al2O3 at 1000?°C. It can be concluded that α-Al2O3 core particles, as the seed crystalline, help to transforming of γ-Al2O3 phase as the shell material directly without forming transitional phases to α-Al2O3. The optical polycrystalline alumina was fabricated using spark plasma sintering of α-Al2O3@amorphous alumina core-shell nanocomposite. The body sintered has a final density of ~99.8% and the in-line transmittance value is ~80% within the IR range.  相似文献   

5.
An in situ reaction bonding technique was developed to fabricate mullite-bonded porous silicon carbide (SiC) ceramics in air from SiC and α-Al2O3, using graphite as the pore-former. Graphite is burned out to produce pores and the surface of SiC is oxidized to SiO2 at high temperature. With further increasing the temperature, the amorphous SiO2 converts into cristobalite and reacts with α-Al2O3 to form mullite (3Al2O3·2SiO2). SiC particles are bonded by the mullite and oxidation-derived SiO2 to obtain porous SiC ceramics. The reaction bonding behavior, open porosity, pore size distribution and mechanical strength of porous SiC ceramics were investigated as a function of the sintering temperature, forming pressure and graphite content. In addition, the phase composition and microstructure were also studied.  相似文献   

6.
The recycling of waste lubricant oil from automobile industry was found to be best alternative to incineration. Silica (SiO2), alumina (Al2O3), silica-alumina (SiO2-Al2O3) supported iron oxide (10 wt% Fe) catalysts were prepared by wet impregnation method and used for the desulphurisation of waste lubricant oil into fuel oil. The extent of sulphur removal increases in the sequence of Fe/SiO2-Al2O3<Fe/Al2O3<Fe/SiO2 and this might be due to the presence of smaller crystalline size (7.4 nm) of Fe2O3 in Fe/SiO2 catalyst. X-ray diffraction results suggest the presence of iron sulphide in the used catalyst. Gas chromatography with thermal conductivity detector analysis confirms the presence of H2S in gaseous products. In addition, Fe/SiO2 catalyst facilitated the formation of lower hydrocarbons by cracking higher hydrocarbons (≈C40) present in waste lubricant oil.  相似文献   

7.
Microsilica addition in Al2O3–MgO and Al2O3–spinel castables helps to improve their flowability and partially accommodate their residual expansion after firing. Nevertheless, there is a lack of conclusive statements in the literature regarding the effects of microsilica on one of the main requisites for steel ladle refractories: corrosion resistance. In the present work, the performance of alumina–magnesia and alumina–spinel with or without microsilica when in contact with a steel ladle slag was evaluated based on three aspects: the material's physical properties, its chemical composition and the microstructural features before the slag attack. According to the attained results, microsilica induced liquid formation and pore growth during sintering, favoring the physical slag infiltration. Moreover, due to this liquid, CA6 was formed in the matrix, mainly for the Al2O3–spinel composition, which also favored the castable dissolution into the molten slag.  相似文献   

8.
《Ceramics International》2023,49(3):4412-4421
Bauxite- and alumina-based spinels were employed as refractory aggregates, and sintered magnesia fine powder, calcium aluminate cement, microsilica, and activated α-Al2O3 were utilized as matrices. The effects of alumina powder, analytically pure zinc oxide, and analytically pure zirconia on the properties of magnesium aluminate spinel–periclase castables were studied. The results demonstrated that the addition of the three additives promoted the sintering of magnesium aluminate spinel–periclase castables. Simultaneously, the three additives significantly improved the high-temperature properties of the samples. The thermal shock resistance of the alumina powder sample increased by 200%, that of the pristine zinc oxide sample by 75%, and that of the zirconia sample by 125%. The additives effectively improved the thermal shock resistance of the magnesium aluminate spinel–periclase castable. In addition, the slag resistance depths of the samples with alumina powder and zirconia were 41% lower than that of the sample without additives, which significantly improved the slag resistance of the magnesium aluminate spinel–periclase castable.  相似文献   

9.
《Ceramics International》2019,45(13):16173-16179
Precursor film method was used to prepare highly permeable ceramic microfiltration membranes in this work. The performance of alumina microfiltration membranes was improved by adding boehmite sol in the membrane precursor film. With increasing the boehmite sol content, the effective average pore size of the membrane was continuously decreased and the separation efficiency of the membrane was increased. These improvements were due to that the boehmite sol not only helped the dispersion of the α-Al2O3 powder in the membrane forming slurry, but also formed γ-Al2O3 in the gaps among the existed α-Al2O3 particles which was beneficial for membrane sintering and pore size decreasing. For the membrane prepared with 45 wt% boehmite sol, the effective average filtration pore diameter was 178 nm and the water permeance of the membrane reached 1691 Lm−2h−1bar−1, which was much better than the values reported before. Moreover, the reusability of the membrane was confirmed using a recycling test.  相似文献   

10.
《Ceramics International》2022,48(18):25723-25740
The work was aimed at the investigation of kinetics of Spark Plasma Sintering (SPS) of the α-Al2O3 particles with amorphous surface layers and investigation of the effect of the amorphous layers on the grain growth and on the mechanical properties of alumina. The objects of investigations comprised:(i) submicron α-Al2O3 powder, (ii) submicron α-Al2O3 powder with the amorphous layers on the particles' surfaces, and (iii) the fine-grained α-Al2O3 powder. The submicron powders (i) and (ii) were used to analyze the effect of the amorphous layers on the sintering kinetics. Powders (i) and (iii) were used to analyze the effect of the initial particle sizes on the shrinkage kinetics. The effect of the temperature regime and of the rate (Vh) on the shrinkage kinetics of the submicron and fine alumina powders has been studied. The shrinkage curves were analyzed using the Young–Cutler and Coble models. The sintering kinetics was shown to be determined by the intensity of grain boundary diffusion for the submicron powders and by simultaneous lattice diffusion and grain boundary one for the fine powders. The amorphous layers on the surfaces of the submicron α-Al2O3 particles were found to affect the grain boundary migration rate and the Coble equation parameters at the final stages of SPS. The abnormal characteristics of the alumina ceramics sintered from the submicron powder with the amorphous layers on the particles’ surfaces were suggested to originate from the increased concentration of the defects and of the excess free volume at the grain boundaries formed during crystallization of the amorphous layers.  相似文献   

11.
In this study, lightweight alumina containing nanoscale intracrystalline pores was fabricated by introducing zirconia sol and alumina sol into α-Al2O3 micropowder. The effects of zirconia sol on the sintering behavior of lightweight alumina were also investigated. With the introduction of zirconia sol, the grain growth and phase transformation of nano-alumina are delayed. Therefore, the structure of the nanoscale pores between nanoparticles can be stabilized during heat treatment, and numerous nanoscale intracrystalline pores with diameters in the range of 50-300 nm are trapped in the alumina grains. Because of the existence of these nanoscale intracrystalline pores, the thermal conductivity of lightweight alumina decreases significantly. Lightweight alumina with the addition of 0.75 wt% zirconia sol exhibits 31% lower thermal conductivity compared to alumina without zirconia sol.  相似文献   

12.
Calcium aluminate cement (CAC) contents higher than 3 wt% in refractory castables can have some drawbacks in the various processing steps (mainly drying) and also in their refractoriness when in contact with SiO2. The use of colloidal silica as an alternative binder has been studied by many researchers in recent years and recently reports have also explored the use of colloidal alumina for the same purpose. This article reviews the recent developments in nano-bonded refractory castables focusing on the use of colloidal silica or alumina. In the first part of the paper, a comparison of different binding systems for refractory castables is shown. The benefits of replacing CAC or hydratable alumina by colloidal binders are discussed. In the second part, the advantages of colloidal silica/alumina as a refractory binder are highlighted. Meanwhile, the characterization techniques and functional mechanisms of these binders are presented in order to understand the behavior of these systems. Finally, in the last section, the challenges for suitable use of colloidal binders are discussed and the future direction of nano-structured refractory castables is outlined.  相似文献   

13.
This paper demonstrates that seeding nanocrystalline transition alumina powders is a viable option for producing high quality, alumina-based ceramics. By using α-Al2O3 concentrations of ⩾1.25 wt.% α-Al2O3 seed particles (equivalent to 5 ×1014 seeds/cm3 of γ-Al2O3) the sintering temperature is reduced from 1600°C for unseeded γ-Al2O3 to 1300–1400°C in dry pressed powders. The scale of the sintered microstructure is related to Nv−1/3 and thus a 100-nm grain size is obtained. It is apparent that seeding is necessary for producing dense, alumina-based ceramics from nanocrystalline transition alumina powders.  相似文献   

14.
Corundum abrasives with plate-like grains were fabricated by a two-step sintering technique using the solution-based process with the addition of the ternary compound additive Na3AlF6-CaO-SiO2. The two-step sintering method showed obvious advantages over conventional sintering methods in promoting sample densification, suppressing grain growth, and homogenizing the microstructure of the corundum abrasives. The sample doped with 2.5?wt% Na3AlF6 and 4?wt% CaO + SiO2 in the molar ratio of 1:1 possessed a relative density of 99.3%, average grain size of 0.54?µm, and single-particle compressive strength of 49?N. The introduction of seeds reduced the temperature of θ- to α-Al2O3 phase transformation. The relationship between the microstructure and the mechanical properties of the abrasives was also discussed.  相似文献   

15.
Alumina is an attractive material for engineering applications due to its unique properties. In this study, CaO–SiO2–Al2O3 eutectic phase was used as an additive phase and liquid phase sintering of the alumina/CaO–SiO2–Al2O3 samples were investigated. The liquid phase sintering was modelled and optimized by Response Surface Methodology (RSM) using Central Composite Design (CCD) to achieve maximum fracture strength and density as responses. Sintering temperature, alumina particles size distribution (PSD), lubricant and eutectic phase content were selected as independent variables. Two cubic models were developed in terms of these variables to describe the responses. The validity and accuracy of the models were checked using Analysis of Variance (ANOVA).Phase identification of the synthesized eutectic phase was evaluated by XRD and fracture strength of the sintered samples was determined by Ring-on-Ring test method. SEM was used to study the fracture surface of the samples. The obtained models for predicting fracture strength and density of the sintered samples showed high conformity with the experimental results. Sintering temperature and alumina PSD were found as the most effective parameters. Therefore, optimized condition based on the defined constraints was obtained for sintering temperature of 1533 °C, alumina PSD of 25%, and lubricant and eutectic phase content of 1.5 wt% and 7.5 wt%, respectively. Results showed that after ball milling of the eutectic phase, the fracture strength of the optimized ceramic sample was improved and it reached to maximum values at smaller amounts of the additive phase.  相似文献   

16.
It is believed that the formation of hydration phase, MgO-SiO2-H2O (M-S-H), contributes to good workability and reliable comprehensive properties for magnesia based castables. In order to stimulate the formation of M-S-H in magnesia based castables and understand the minimum introduction of microslica amount, wet milling process was used to promote the dissolution of MgO and SiO2 in this work. The slurry containing different content of microsilica with wet milling technology and the castables with/without wet milling slurry were prepared. The effects of microsilica content on the formation of hydration phases were analyzed by XRD, FT-IR and TG/DSC and the properties of magnesia based castables were evaluated by explosion resistance, CMOR, HMOR and so on. The results showed that the formation of M-S-H was accelerated because of the dissolution of Mg2+ and HSiO3? in wet milling process. Higher amount of M-S-H led to a tight bonding in the early stage, and a denser structure after firing at high temperature due to the limited formation of brucite and in-situ formation of evenly distributed forsterite phase. In addition, much higher HMOR were obtained when less microsilica was added, attributing to the suppressed formation of low-melting-point liquid. Therefore, 2–3 wt% microsilica addition was recommended in this process.  相似文献   

17.
Silica-doped alumina aerogels offer the potential alternative to the applications as thermal insulators, catalysis, or catalytic support at elevated temperatures. However, the production process of silica-doped alumina aerogels was complicated and time-consuming. We developed a one-step precursor-to-aerogel method of silica-doped alumina aerogels with high specific surface area and thermal stability. Compared to conventional methods, the developed method reduced time and solvent waste of alumina-based aerogels production. Here, we investigated the alumina aerogels doped with silica to stabilize γ-phase at higher temperatures. XRD, FTIR, TEM, TG-DSC, and BET analysis results showed that silica stabilized the γ-Al2O3 at 1200 °C. The stabilization mechanism analysis showed that silica addition could significantly hinder the contact among alumina particles and the formation of necks in the sintering process, thereby retarding the transition of γ–θ phase and maintaining the high specific surface area at elevated temperatures. Silica and alumina particles formed mullite at 1200 °C, which could suppress α-phase transformation. In addition, silica-doped alumina aerogels exhibited the high specific surface area of 311 m2/g at 1000 °C and 146 m2/g at 1200 °C when the silica content was in the range of 10.6–13.1 wt%.  相似文献   

18.
《Ceramics International》2015,41(4):5857-5862
Microporous corundum aggregates were fabricated based on superplasticity, with α-Al2O3 micropowder as the main raw material, by adding nano-sized alumina sol and MgO micropowder. The relationship between the superplasticity and the in-situ stress during sintering, the corresponding sintering properties, and the microstructures of the fabricated microporous corundum aggregates were investigated by means of X-ray diffraction (XRD), mercury porosimetry, and scanning electron microscopy (SEM). The experimental results show that the relationship between the superplasticity and the in-situ stress is the main factor that influences the sintering behavior of the microporous corundum aggregates. Various amounts of MgO micropowder were added to the α-Al2O3 micropowder for a fixed content of nano-sized alumina sol. With increasing MgO micropowder, which results in a greater in-situ stress, the total and closed porosity increased initially and decreased afterwards whereas the apparent porosity and bulk density decreased first and then increased. Microporous corundum aggregates with high closed porosity, low apparent porosity and small pore size were obtained with the addition of 1 wt% MgO micropowder. Therefore, the relationship between the superplasticity and the in-situ stress should be controlled in order to fabricate microporous refractory aggregates which have high closed porosity and small pore size.  相似文献   

19.
The stability of a Pt/??-Al2O3 catalyst in liquid water and aqueous solutions of 5?wt% glycerol or sorbitol at 225?°C is examined using a variety of physicochemical methods. It is demonstrated that the presence of glycerol and sorbitol significantly reduces the hydration of ??-Al2O3 to form boehmite as compared to treatment in pure water. The stability against hydration increases with increasing carbon chain length. Treatment with polyol solutions also results in reduced agglomeration of supported metal particles. The prevention of boehmite formation and agglomeration of metal particles are attributed to the formation of carbonaceous species on the surface. In addition to these effects, the deposits block a considerable portion of active metal surface area. IR spectroscopic analysis indicates that dehydration reactions play an important role in the formation of the carbonaceous deposits. The present results illustrate that water and dissolved biomass compounds can strongly affect the stability of heterogeneous catalysts under reaction conditions.  相似文献   

20.
Mullite ceramic was prepared using kaolinite and synthesized alumina (combustion route) by solid-state interaction process. The influence of TiO2 and MgO additives in phase formation, microstructural evolution, densification, and mechanical strengthening was evaluated in this work. TiO2 and MgO were used as sintering additives. According to the stoichiometric composition of mullite (3Al2O3·2SiO2), the raw materials, ie kaolinite, synthesized alumina, and different wt% of additives were wet mixed, dried, and uniaxially pressed followed by sintering at different temperature. 1600°C sintered samples from each batch exhibit enhanced properties. The 1 wt% TiO2 addition shows bulk density up to 2.96 g/cm3 with a maximum strength of 156.3 MPa. The addition of MgO up to 1 wt% favored the growth of mullite by obtaining a density and strength matching with the batch containing 1 wt% TiO2. These additives have shown a positive effect on mullite phase formation by reducing the temperature for complete mullitization by 100°C. Both additives promote sintering by liquid phase formation. However, the grain growth, compact microstructure, and larger elongated mullite crystals in MgO containing batch enhance its hardness properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号