首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Al2O3-CaO-MgO-Cr2O3 system has immense potential for refractory castables applications. However, Cr(III) can potentially be oxidized to carcinogenic Cr(VI) during the usage, which can cause subsequent problems with disposal. Equilibrium experiments on the Al2O3-CaO-MgO-4wt%Cr2O3 system were performed at 1500?°C in air. The effect of MgO addition (0 and 20?wt%) on the formation and leachability of hexavalent chromium was investigated using XPS, XRD, SEM-EDS, the TRGS 613 standard Cr(VI) leaching test and multiple leaching tests. A Cr(VI)-containing phase Ca4Al6CrO16 predominantly formed in the samples with 0 and 5?wt% MgO, while the Cr(III)-containing Mg(Al, Cr)2O4 spinel phase formed in the samples with 10 and 20?wt% MgO. Addition of MgO suppressed the formation of Cr(VI) while favored the formation of spinel phase. Concentrations of Cr(VI) in the leachates from TRGS 613 tests exceeded the European limit of 0.0002?wt% in all samples, although decreased significantly with 20?wt% MgO addition.  相似文献   

2.
Reactive MgO was used in the first time as alternative hydraulic binder of calcium aluminate cement (CAC) to prepare Cr2O3-bearing refractory castable. The formation of Cr(VI), and physical and mechanical properties of MgO-bonded refractory castables after heat-treating were investigated. Microstructural characterization and phase composition analyses on the heat-treated MgO-bonded refractory castable matrices resulted in a comprehensive understanding of the mechanism for the inhibition of Cr(VI), and of the strength development during firing. The results indicate that compared with CAC, Cr(VI) levels were 6.7–28.1 times lower using reactive MgO after firing at 700–1300 °C. The in situ Mg(Cr,Al)2O4 spinel formed from the preferential interactions among MgO and Cr2O3 and Al2O3 would be the main reason leading to the inhibited Cr(VI) formation and strength development during firing.  相似文献   

3.
This study investigated the effect of Al2O3/SiO2 mass ratios on the equilibrium crystallization behavior of synthesized CaO–SiO2–MgO–Al2O3–Cr2O3 stainless steel slags to understand the selective concentration behavior of Cr into a primary Mg(Cr,Al)2O4 spinel phase during slag solidification and to determine the leaching stability of Cr-containing slags. The spinel solid solution was precipitated within the temperature range of 1600-1400 °C, where the Cr/(Cr+Al) mole ratio in the Mg(Cr,Al)2O4 spinel phase gradually decreased for slags with higher Al2O3/SiO2 mass ratios. When the Al2O3/SiO2 mass ratio increased from 0.125 to 0.5, the Cr content in the amorphous glass phase gradually decreased, with a subsequent increase in the Cr content in the crystalline phase. For slags with a unit Al2O3/SiO2 mass ratio and MgO mole percent comprising less than the combined sum of the Cr2O3 and Al2O3 mole percents, the Cr content in the amorphous glass phase increased, which was correlated with the enhanced substitution of Cr3+ with Al3+ in the spinel. The trend of the amount of Cr-related ions in the leachate was consistent with the trend of Cr in the amorphous glass phase: the amount decreased for slags with Al2O3/SiO2 mass ratios from 0.125 to 5 and then increased for slags with an Al2O3/SiO2 mass ratio of 1. The results suggest that the addition of appropriate amounts of Al2O3 to stainless steel slags could be conducive to stabilizing Cr into the primary spinel phase to minimize Cr leaching into the environment.  相似文献   

4.
Al2O3–CaO–Cr2O3 castables are required for various furnaces linings due to their excellent corrosion resistance. However, toxic and water-soluble Cr(VI) could be generated in these linings during service. In this study Al2O3–CaO–Cr2O3 castables were prepared and heated at 300–1500 °C in air and coke bed to simulate actual service conditions. The formations of various phases were investigated by XRD and SEM-EDS. The Cr(VI) compounds CaCrO4 and Ca4Al6CrO16 formed in air at 300–900 °C and 900–1300 °C respectively, while C12A7 and CA2 were generated rather than forming Cr(VI) compounds in coke bed at 700–1300 °C. However, at 1500 °C, nearly all the chromium existed in the form of (Al1-xCrx)2O3 solid solution in both atmosphere. As a result, the specimens treated in air contained 185.0–1697.8 mg/kg of Cr(VI) at 500–1300 °C but only 17.2 mg/kg of Cr(VI) at 1500 °C, whereas specimens treated in coke bed exhibited extremely low Cr(VI) concentration in the whole temperature range studied. Moreover, in coke bed, the mutual diffusion between Cr2O3 and Al2O3 was suppressed and a trace of Cr2O3 would even be reduced to form chromium-containing carbides on its surface, which would hindered the sintering process and hence lower the density as well as strength of the castables.  相似文献   

5.
The interaction mechanisms between a pitch-bonded MgO–C refractory and an Al2O3 rich (~15 wt%) stainless steelmaking slag were investigated by rotating finger tests in a vacuum induction furnace. A porous MgO layer (instead of a dense MgO layer) was observed at the hot face of the MgO–C bricks. This implies that under the present low oxygen pressure conditions, the oxygen supply from the slag is insufficient to meet the demand of reoxidising the entire amount of Mg vapor generated from the MgO–C reaction to form a fully dense MgO layer. A Mg(Al,Cr)2O4 spinel layer with zoning was found at the slag/brick interface in the top slag zone specimen of Test 3 (CHS3). Based on the thermodynamic analyses with and experimental data, a mechanism of Mg(Al,Cr)2O4 spinel formation is proposed. Initially, hot face periclase grains take up Cr2O3, and to a much lesser extent, Al2O3 from the slag. The further diffusion of Cr2O3 and Al2O3 from the slag establishes a spinel layer of three distinct compositions of the type MgAl2(1?x)Cr2xO4, with x decreasing when moving from the interior to the exterior spinel layer. Due to the low oxygen pressures, the thermodynamically less stable, dissolved Cr2O3 in the hot face periclase decomposes and forms chromium-rich metal droplets.  相似文献   

6.
《Ceramics International》2019,45(13):16476-16481
Despite huge potential, Al2O3–CaO–Cr2O3 system has been one of the least investigated one due to the generation of carcinogenic and toxic Cr(VI) compounds. Herein, we investigated the system under air atmosphere varying Cr2O3 while keeping Al2O3:CaO ratio constant in order to identify the Cr(VI) dominant region, eventually to avoid it. The Ca4Al6CrVIO16 phase predominantly formed in the air atmosphere with Cr2O3 content up to ∼12 mol%. However, an unprecedented Cr(III) phase appeared under air at higher Cr2O3 content (26.43 mol%). We then synthesized the new polycrystalline ternary Cr(III) compound (CaAl2Cr2O7) at 1500 °C under air atmosphere for the first time. A trigonal symmetry of hexagonal crystal family with space group P3 (143), lattice parameters a = b = 7.7909 Å and c = 7.6506 Å were determined from the X-ray powder diffraction pattern study. Electron microscope studies revealed uniform hexagonal microcrystals with similar lattice parameters. Most significantly, the binding energies of 586.1 and 576.2 eV for Cr2p1/2 and Cr2p3/2 respectively implied the +3 oxidation state of Cr in this compound.  相似文献   

7.
《Ceramics International》2021,47(24):34012-34019
Cr-refractories usually contain Cr(III) compounds that can convert into carcinogenic Cr(VI) compounds such as CaCrO4 and Ca4Al6CrO16 under alkaline and oxygen-rich conditions. Literature provides insight into the characteristics, thermal stability, and aqueous solubility of CaCrO4, while there is hardly any data available on Ca4Al6CrO16. The present paper comprehensively studied high-temperature stability and leaching kinetics and other characteristics of Ca4Al6CrO16 by using high-temperature XRD, TG-DSC, XPS, Raman, and TRGS 613. XPS confirmed that chromium in Ca4Al6CrO16 is present in the +6 oxidation state. Ca4Al6CrO16 is thermally stable up to 1500 °C in the air but decomposes in nitrogen above 1258 °C to form the Cr3+-containing phases CaCr2O4 and Ca6Al4Cr2O15. The Ksp of Ca4Al6CrO16 in deionized water is 1.0381 × 10−22, 4.5723 × 10−21 and 2.3489 × 10−20 at 12, 25, and 40 °C, respectively. The leaching process of Ca4Al6CrO16 is chemical reaction controlled, with an apparent activation energy of 58.78 kJ/mol.  相似文献   

8.
The present work reports an investigation of the interactions of Al 7075 alloy and anorthite at 850°C (150 h) and 1150°C (24 h). Transmission electron microscopy, electron probe microanalysis, X‐ray diffraction, and scanning electron microscopy coupled with energy‐dispersive spectroscopy were used to identify the mineralogical and microstructural changes at the metal–ceramic interface. At 850°C, the phase formation mechanisms were (a) Si4+–Al3+ interdiffusion between the Al alloy and anorthite to form calcium dialuminate (CA2) and Ca2+–Mg2+ interdiffusion between the Al alloy and calcium dialuminate to form spinel. At 1150°C, spinel + Al2O3 and calcium hexaluminate (CA6) + CA2 were the major and minor phase mixtures, respectively in the corroded area. A thin layer of calcium monoaluminate (CA), gehlenite, and Si was present in the immediate vicinity of anorthite. The early stages of corrosion at 1150°C and 850°C were identical. However, due to thickening of the corroded region (viz., spinel formation) and enhanced evaporation of Mg at the higher temperature, the interdiffusion path evolves from Si4+–Al3+ + Ca2+–Mg2+ to Si4+–Al3+ + Ca2+–Al3+, thus establishing the following phase evolution path at the interface:   相似文献   

9.
《Ceramics International》2021,47(23):33322-33329
In order to enhance the slag resistance of Al2O3-spinel castables, (Al,Cr)2O3 is added into Al2O3-spinel system as a pre-synthesized micro-powder. Firstly, (Al,Cr)2O3 micro-powder is synthesized by sintering under reduction conditions to prevent the formation of hexavalent chromium. The Al2O3-spinel castables are prepared using tabular alumina, fused spinel, α-Al2O3 micro-powder, calcium aluminate cement and (Al,Cr)2O3 micro-powder as the raw materials. The bulk density, porosity, mechanical properties, and slag resistance of the samples are tested. Afterward, the effects of (Al,Cr)2O3 micro-powder (0–3 wt%) on the slag resistance and microstructures of the Al2O3-spinel castables are assessed by X-ray diffraction (XRD) and energy-dispersive (SEM-EDS) analysis. The results show that the addition of (Al,Cr)2O3 micro-powder can could inhibit the deteriorating effects of Cr3+ on the mechanical properties of the samples. The microstructure results also shows that with the addition of the (Al,Cr)2O3 micro-powder, a secondary solid solution of Ca(Al,Cr)12O19 formed, causing the unit cell to become larger. In the slag erosion area, CA6 crystals formed with network-like interwoven structures, high density, and greater thickness. These characteristics significantly reduce the erosion and permeability indices of the castables, and improve the slag erosion resistance of the material.  相似文献   

10.
Conclusions An investigation of the phase conversions in the MgO-Al2O3-Cr2O3 system at a below-unity ratio MgO/R2O3 and varied content of sesquioxides showed that the magnesiochromite initially being formed in all mixtures interacts with the Al2O3 at temperatures above 1000°C with the result that two kinds of solid solutions are formed, viz., a spinel one Mg(CrxAl)1–x)2O4 and (AlxCr1–x)2O3. The predominance of a given component in the original composition remains preserved in both phases.The presence was established of a solid solution of Al2O3 in the spinel phase which contained a signficant amount of MgAl2O4. No solid solutions of R2O3 are formed in the spinel when the chromite component predominates in both phases.The changes in the properties of the specimens correspond to the phase conversions. After high-temperature firing materials of the type Mg(Al, Cr)2O4-(Al, Cr)2O3 possess adequate property indices.The analysis is concerned with that part of the system for which MgO/(Al2O3 + Cr2O3) is less than unity.Translated from Ogneupory, No. 8, pp. 48–53, August, 1976.  相似文献   

11.
《分离科学与技术》2012,47(13):1919-1935
ABSTRACT

In this study the transport of chromium(VI) from aqueous solutions of pH 2–4 through a supported liquid membrane (SLM) with tri-n-octylphosphine oxide (TOPO) dissolved in kerosene as a mobile carrier was investigated. The transport flux of Cr(VI) increased with an increase in the concentrations of Cr(VI) in the feed phase and of TOPO in the membrane phase, but with a decrease in pH of the feed phase. Considering the equilibria of various Cr(VI) species in the aqueous phase and of the Cr(VI)—TOPO complexes formed in the membrane phase, a permeation model including the aqueous film diffusion of HCrO4 ? and Cr2O7 2? toward the membrane, the interfacial chemical reaction between them and TOPO, and the membrane diffusion of the Cr(VI)—TOPO complexes (H2CrO4(TOPO) and H2Cr2O7(TOPO)3) was proposed to describe the transport of Cr(VI) through the SLM. By best fitting the transport flux equations of Cr(VI) with the experimental data using the Rosenbrock method, the apparent mass-transfer coefficients of HCrO4 ? and Cr2O7. across the aqueous film, and those of H2CrO4(TOPO) and H2Cr2O7(TOPO)3 across the membrane phase, were obtained. This work helps to clarify the transport mechanism of Cr(VI) through an SLM.  相似文献   

12.
《Ceramics International》2022,48(12):17270-17278
The structural, magnetic, and dielectric properties of spinel Magnesium (Mg) doped Nickel chromite (NiCr2O4) nanoparticles (NPs) have been studied in detail. The X-ray powder diffraction exhibited normal spinel phase formation of MgxNi1-xCr2O4 (x = 0, 0.2, 0.4, 0.6, and 1) NPs with a maximum average crystallite size of about 44 nm for x = 0.2 composition. The FTIR spectra of these NPs revealed the characteristic Ni–O and Mg–O and Cr–O bands around 639 cm?1 and 497 cm?1, respectively which confirmed the spinel structure. Temperature-dependent zero field cooled and field cooled graphs of NiCr2O4 NPs showed phase changes from ferrimagnetic to paramagnetic state at 86 K, while MgCr2O4 NPs showed antiferromagnetic (AFM) transition at Neel temperature (TN) at 15 K due to corner-sharing of Cr3+ ions at a tetrahedral lattice site resulting in a highly magnetic frustrated structure. The field dependent magnetization (M ? H) loops of MgxNi1-xCr2O4 NPs confirmed the competing AFM interactions and ferrimagnetic interactions resulting in a sharp decreased saturation magnetization with Mg doping. Dielectric constant, dielectric loss, and ac conductivity of these NPs showed size-dependent variation and depicted maximum value at x = 0.2 Mg concentration. In summary, the magnetic and dielectric properties of Mg doped NiCr2O4 NPs were modified by variations in the average crystallite size and magnetic exchange interactions, which may be suitable for different technological applications.  相似文献   

13.
The photocatalytic reduction of Cr(VI) to the less toxic Cr(III) is presented in the presence of the polyoxometalates (POM) PW12O403− or SiW12O404− as photocatalyst and an organic substrate (salicylic acid or propan-2-ol) as electron donor. Cr(VI), as dichromate, is reduced to Cr(III), according to the 6:1 stoichiometry of PW12O404− versus Cr2O72− indicated from experiments in the dark. Increase of POM or salicylic acid (SA) concentration accelerates, till a saturation value, both the reduction of metal and the oxidation of the organic, suggesting that these two conjugate reactions act synergistically. The photocatalytic action of POM is not so important in the case of highly concentrated solutions of organics that exhibit direct photochemical reduction of Cr(VI), i.e. propan-2-ol (i-prOH), while it becomes important at low concentrations of i-prOH, especially for organics that do not react directly photochemically with Cr(VI), such as SA. Increase of Cr(VI) concentration enhances consumption of SA and Cr(VI) till an optimum value, due to inner filter effect. The method is suitable for a range of chromium concentration from 5–100 ppm achieving complete reduction of Cr(VI) to Cr(III) up to non-detected traces (>98%). The presence of oxygen does not influence the efficiency of SA and Cr(VI) consumption. In contrast to the semiconductor-based heterogeneous photocatalysis, the POM-based homogeneous process seems superior in the frame that: (i) it remains catalytic throughout illumination by providing more active sites and (ii) among the two POM used, the one that is more efficient in the degradation of the organic, that is PW12O403− compared to SiW12O404−, is also more efficient in reducing Cr(VI), due to a kinetic effect, and a compromise is not needed.  相似文献   

14.
This work investigates the stabilizing impact of MnO on the leaching behavior of hazardous Cr-containing CaO-SiO2-Al2O3-Cr2O3-MnO stainless steel slags after equilibrating at various elevated temperatures and evaluates the potential immobilization of Cr into a MnCr2O4 spinel phase from the existing Cr2O3 phase. The MnCr2O4 spinel phase was found to be an excellent Cr-stabilizer in stainless steel slags, where the leaching tendency of potentially hazardous Cr-related ions decreased with higher MnO content and lower equilibration temperatures within the range of 0 to 15 mass pct. and 1500 to 1300°C, respectively. Thermodynamic calculations by conducting the phase stability diagram also showed that the MnCr2O4 spinel phase was relatively stable and the Ca3Si2O7 (Ca3-xMnxSi2O7) phase was relatively unstable compared with other crystal phases in acid extractant with pH value of 3.2. Combined with the scanning electron microscopy and X-ray powder diffraction results along with the thermodynamic calculations, the leached Cr-related ions was predominantly originating from the unstable amorphous glass phase.  相似文献   

15.
《Applied catalysis》1990,57(1):253-269
Unpromoted MnCrO catalysts with manganese-to-chromium (Mn/Cr) atomic ratios ranging from 0.5 to 5 have been prepared and characterized by XRD, IR, UV-VIS diffuse reflectance, differential thermal analysis-thermogravimetric analysis and surface area measurements. The preparation chemistry is based on the redox reaction 3MnII+CrVI→3 MnIII+CrIII and the phase transformations occurring during activation depend on the Mn/Cr ratio and the annealing atmosphere. Activation in air at 400–600°C results in the formation either of α-Cr2O3 and a spinel phase or of α-Mn2O3 for low and high Mn/Cr ratios, respectively. Activation in hydrogen at similar temperatures results in the formation of MnCr2O4 for Mn/Cr = 0.5 and of an MnO-type phase for high Mn/Cr ratios, which is pyrophoric when exposed to air at room temperature. Activation in nitrogen is most suited for the preparation of MnCrO catalysts because it prevents both pyrophoric effects and the formation of oxides of Mn and Cr, which are known to catalyse the formation of undesirable reaction products during the synthesis of higher alcohols. Activation in air at higher temperature causes the disappearance of α-Cr2O3 and α-Mn2O3 and the formation of a spinel-like phase; for high manganese contents a tetragonal distortion of the cubic spinel phase is observed owing to the Jahn-Teller stabilization of octahedrally coordinated MnIII. In the synthesis of higher alcohols, (i) Mn/Cr ratios > 0.5 ensure high activity in methanol synthesis, (ii) high Mn/Cr ratios depress the productivity with respect to ethers and methane because of the lower surface acidity and (iii) irrespective of the Mn/Cr ratio, all MnCrO catalysts are effective systems for the water-gas shift reaction.  相似文献   

16.
The phase composition and structure of fusion-cast refractories composed of 57.0 – 84.2% Cr2O3, 4.3 – 36.1% MgO, 2.0 – 9.7% Al2O3, and 2.4 – 6.9% SiO2 have been studied by petrographic and x-ray spectral microprobe analysis methods. Refractories high in MgO with modulus M = (Cr2O3 +Al2O3)/MgO = 1.64 – 3.1 are shown to consist of spinel phase Mg(Cr, Al)2O4 and silicate glass. Refractory materials (80.8 – 84.2% Cr2O3, 4.3 – 4.7% MgO, 2.0 – 9.7% Al2O3, and 2.7 – 6.9% SiO2 with M = 18.7 – 20.2) are three-phase systems composed of spinel, escolaite, and glass phase. These materials, owing to their high corrosion resistance, have promising potentiality for practical applications.__________Translated from Novye Ogneupory, No. 12, pp. 69 – 74, December, 2004.  相似文献   

17.
Thermoelectric performance of Ca3Co4O9 system has been enhanced through the misplaced substitution with Cr doping at Ca‐sites. The study of Cr doping at Co‐sites has also been performed for comparing. Base on the analysis of the structural data, we conclude that the doped Cr ions should be in the form of Cr+6, and enter into Ca‐sites of Ca2CoO3 layers in Ca3?xCrxCo4O9 lattice and Co‐sites of CoO2 layers in Ca3Co3.90Cr0.10O9 lattice, respectively. As Cr ions are doped into Ca‐sites in Ca3?xCrxCo4O9 lattice, both resistivity and thermopower increase obviously, while thermal conductivity decreases. Among all samples, Ca2.95Cr0.05Co4O9 shows the maximum ZT value, which is enhanced by 12% than that of Ca3Co4O9. The results show that the misplaced substitution with a proper Cr doping at Ca‐sites is beneficial to the enhancement of the thermoelectric performance in Ca3Co4O9 system compared to the traditional idea: Cr doping at Co‐sites, which is suggested to originate from the combined action of the carrier concentration, the electronic correlation, and the lattice disharmony.  相似文献   

18.
Conclusions Magnesia-alumina spinel and highly chromic spinel MgAl0.4Cr1.6O4 and MgCr2O4 retard the grain growth of corundum during firing of the product. Low-chromic spinel MgAl1.6Cr0.4O4 and MgAlCrO4 added in small quantities intensify the corundum recrystallization.Small (5–10% by weight) additions of spinel Mg(Al1–x, Crx)2O4 increase the strength of the corundum specimens, but only the high-alumina spinel improves their sintering.The sintering of mixtures of Al2O3 and Mg(Al1–x Crx)2O4 is impaired during the substitution of magnesia-alumina spinel by magnesia chromite, and with an increase in the quantity of spinels from 5 to 30%.A small addition (5–10%) of high-alumina spinel of the composition Mg(Al1–x, Crx)2O4 where x 0.5 to the alumina precalcined at 1450°C enables us to obtain dense, strong, and thermally shock-resistant corundum products.Translated from Ogneupory, No. 3, pp. 53–56, March, 1972.  相似文献   

19.
0.25at.% Cr:YAG ceramics were successfully fabricated as the edge cladding of Yb:YAG transparent ceramic slabs through vacuum sintering of co‐precipitated powders, using oxide additives to introduce different cations. The effects of various cation additives (Si4+, Ca2+, and Si4+ + Ca2+) on the conversion efficiency of Cr4+ ions and optical characteristics of the Cr:YAG edge cladding were investigated. Measurements of the absorption spectra of the Cr:YAG ceramics without any additives revealed 2 absorption bands centered at 430 nm and 600 nm, which imparted the sample with a green color. The introduction of only Si4+‐bearing additive did not promote the transition of Cr ions from the 3+ to 4+ state. Theoretical analysis and experimentation revealed that the addition of CaO not only enhanced the microstructure and improved the transmittance of the Cr:YAG ceramic, but also introduced vacancies that assisted in the formation of Cr4+ ions. It was determined that CaO has the same effect on the conversion efficiency of Cr4+ ions whether it is added as a single additive or in combination with SiO2. The underlying mechanisms by which these aliovalent cation additives influence the formation of Cr4+ ions and affect optical properties are discussed in detail. High quality composite ceramics with Yb:YAG transparent ceramic slabs and dark brown‐colored Cr4+: YAG ceramic edge cladding were achieved through the addition of 0.05 wt.% CaO to the edge cladding, with no interfacial effects between the 2 regions being observed.  相似文献   

20.
In this paper, dynamic corrosion experiment of a high chromia refractory interaction with basic coal slag under slagging gasifier conditions was conducted by using rotary drum corrosion test with the FactSage thermodynamic analysis. The microstructures and chemical compositions of the corroded samples were analyzed by scanning electron microscopy (BEI and EDS), and the corrosion mechanism was investigated by combining thermodynamic simulation and SEM analysis. The results show that the simulation results were consistent with the results of corrosion test. Reaction layer and penetration layer are formed from the surface to the interior of the sample after corrosion. The (Mg, Fe) (Al, Cr)2O4 spinel solution was formed in the reaction layer, which make the matrix structure become dense and change the overall structure of the particles’ uniformity. Corrosion of Cr2O3 aggregate is relatively weak by slag. The Cr2O3 dissolves into the slag through the formed spinel solution layer on the surface of aggregates. While, Cr2O3 and Al2O3 dissolve into molten slag through the spinel solution layer formed in the matrix. ZrO2 in the matrix directly dissolved into molten slag and penetrates inner the matrix with the penetration of the slag to form a ZrO2-free region. The liquid sintering of the matrix has happened in the melt, causes the structure of the penetration layer become dense, which is different from that of the original sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号