首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Since the application of cordierite ceramics is limited by the disadvantages of traditional preparation techniques, 3D printing technology provides the only choice for the rapid preparation of cordierite ceramics with highly complex structures. In this work, the fabrication of cordierite ceramics with complex structures was achieved by direct ink writing. The near-net-shape of cordierite ceramics was realized by the volume expansion caused by the phase transformation. A cordierite ceramic with an average shrinkage rate of 1.58 % was obtained at 1400 °C. The low shrinkage avoids design and manufacturing procedures carried out for dimensional and alignment errors. In addition, the coefficient of thermal expansion was as low as 1.69 × 10?6 °C?1. The effect of configuration on the thermal behavior of cordierite ceramics is understood by analyzing the phase composition and microstructure. The cordierites ink reported in this work offers additional possibilities for the production of novel complex structures.  相似文献   

2.
Alumina-based ceramic cores, widely applied to cast alloy, have been restricted by the increased complexity of castings, the resultant complex equipment and cost. In this research, to address the aforesaid disadvantages, direct ink writing, a green additive manufacturing method, is utilized to directly fabricate a new kind of nanosized MgO strengthened alumina-based ceramic cores. Slurries with various compositions exhibits ideal shear-thinning behaviors, owing to the hydrogen bond formed between polyvinylpyrrolidone and kaolin molecules. We notice that introducing nanosized MgO reduces drying shrinkage of green specimens and greatly promotes liquid-phase sintering, leading to rather more densified samples. Overall, it is anticipated that the current approach is effective in rapidly manufacturing alumina-based ceramics and some other ceramics with high strength, low shrinkage and high quality.  相似文献   

3.
The development of geopolymeric inks with optimized rheological properties for DIW is presented; several inks with different water content and additives were compared to determine which parameters enable extrusion as well as shape retention. It is a challenging task, because the inks are subjected to ongoing poly-condensation reactions which continuously modify their rheological properties over time.Highly porous ceramic lattices (porosity up to ∼71 vol%) were fabricated with ∼0.8 mm struts and unsupported features with very limited sagging. Their physical and mechanical properties were characterized and correlated. Our approach can be successfully extended to other formulations.Geopolymeric foams have recently been proven as suitable for water filtration; the use of precisely designed, non stochastic printed structures could enhance the mechanical properties of the porous components, provide a better control of pressure drop and fluid dynamics inside the part and improve their performances consistently.  相似文献   

4.
《Ceramics International》2022,48(1):864-871
Three-dimensional (3D) printing of ceramics has attracted increasing attention in various fields. However, the pyrolysis of organic components used for binding or polymerization in 3D printing commonly causes a large shrinkage (up to 30 %–40 %), high porosity, and cracking or deformation, severely limiting practical applications. In this study, 3D printing of Al2O3 ceramic architectures with ultra-low shrinkage is realized by introducing inorganic binder aluminum dihydrogen phosphate (Al(H2PO4)3, AP) as a ceramic precursor. Compared to organic binders, the inorganic AP binder can undergo crystallization conversion, which reduces mass loss during sintering at high temperatures, resulting in low shrinkage. Moreover, AP can be used as a rheological modifier to regulate the printability of the ceramic ink for direct ink writing of Al2O3 ceramic architectures, such as wood-piled scaffolds, honeycomb structures, and tubes with high fidelity. The resultant Al2O3 structural ceramics sintered at 1250 °C exhibit good mechanical performance and structural integrity. Most importantly, the linear shrinkage of the printed ceramics is less than 5 %, which is several times lower than that of ceramics with organic binders. This study provides a viable strategy for fabricating high-performance ceramic architectures with good dimensional fidelity for practical applications.  相似文献   

5.
Piezoelectric ceramic, as a typical smart material, shows great potential in applications of sensing & actuation, smart structure and energy harvesting. However, the use of traditional methods to fabricate complex and high-precision piezoelectric ceramic devices faces huge technical difficulties and high molding costs. Direct ink writing is a typical additive manufacturing technology, but has limited capabilities when preparing ceramic products with complex unsupported structures. In this work, a combined process of direct ink writing (DIW) and secondary shaping of flexible ceramic green body has been developed and proved to produce complex piezoelectric ceramics. The PZT ink shows shear thinning behavior and appropriate viscoelasticity such as moderate viscosity and high storage modulus. The printed green body can be flexibly deformed and the samples after polarization show good piezoelectric properties, with an average d33 up to 265 pC/N. This work demonstrates an attractive method for geometrically complex piezoceramic with unique macro structure due to its simplicity and low cost, and provides a solution to the key problems in the existing manufacturing technology of 3D ceramics.  相似文献   

6.
Direct ink writing (DIW), or Robocasting, is an additive manufacturing technique that offers the opportunity to create patient specific bioactive glass scaffolds and high strength scaffolds for bone repair. The original 45S5 Bioglass® composition crystallises during sintering and until now, robocast glass scaffolds contained at least 51.9 mol% SiO2 or B2O3 to maintain their amorphous structure. Here, ICIE16 and PSrBG compositions, containing <50 mol% SiO2, giving silicate network connectivity close to that of 45S5, were robocast and compared to 13–93 composition. Results showed Pluronic F-127 can be used as a universal binder regardless of glass reactivity and that particle size distribution affected the ink “printability”. Scaffolds with interconnects of 150 μm (41–43% porosity) had compressive strengths of 32–48 MPa, depending on the glass composition. Robocast scaffolds from these highly reactive bioactive glasses promise greatly improved bone regeneration rates compared with existing bioactive glass scaffolds.  相似文献   

7.
Direct ink writing – an extrusion-based additive manufacturing process – followed by pressureless sintering was investigated to produce boron carbide monoliths. The effects of ceramic powder loading and Pluronic binder concentration on the rheology of boron carbide pastes were studied and linked to both processing behaviour and final outcome in terms of sintered density and hardness. The effects of printing parameters, in particular orifice diameter and printing speed, were also investigated. Reducing the size of the extrusion nozzle from 584 μm to 406 μm led to significantly better shape retention, lower surface roughness, as well as higher density and hardness. A 203 μm printing orifice was also trialled but was unsuccessful due to faster drying kinetics that occurred with smaller ceramic struts resulting in rapid warping and nozzle clogging. Carbon-black – 8 wt% relative to B4C – acted as an effective sintering aid to increase both density and hardness. After optimisation of feedstock and printing parameters, few-layer samples (3–5 layers) had a density as high as ∼ 97 % TD and a hardness of ∼ 30 GPa. On the other hand, 18-layer specimens had a sintered density of ∼ 87 % TD, despite a fully dense microstructure, due to the formation of a 3D array of inter-strut pores. Nevertheless, several issues that arose during manufacturing and post-processing were detrimental to the density and structural integrity of printed specimens; these issues were identified, discussed, and suggestions for future work are provided.  相似文献   

8.
Additive manufacturing via direct ink writing and microwave dielectric characterisation of commercially produced low sintering temperature bismuth molybdenum oxide ceramics, have been both performed for the first time, following a powder-to-product holistic approach. We demonstrated that direct ink writing is an excellent candidate for producing dielectric substrates to be used for wireless telecommunication applications operating at microwave (MW) frequencies, with great repeatability and properties comparable to ceramics fabricated via conventional processing routes. The optimum density (relative density of ρr ≈ 93%) of the 3D printed test samples was obtained by sintering at 660 °C for 2 h, resulting in a relative permittivity εr = 35.7, dielectric loss tanδ = 0.0004 and microwave quality factor Q × f = 14,928 GHz. Sintering at higher temperatures promoted a porosity increase due to mismatching grain growth mechanisms and phase decomposition, that collectively hindered the test samples’ microwave dielectric performance in terms of achievable relative permittivity (εr) and dielectric loss (tanδ).  相似文献   

9.
堇青石陶瓷蜂窝载体的微观结构分析   总被引:1,自引:0,他引:1  
采用XRD、SEM、EDS以及N2和汞吸附-脱附比表面积和孔径分布等分析手段,对机动车尾气净化催化剂陶瓷蜂窝载体的微观结构进行了研究。结果表明:虽然国内产品的化学组成和相组成与国外产品的基本相同,但其比表面积和孔结构等微观结构相差较大。这主要是由于国外采用全生料配料成型,在一次烧成中同时完成堇青石的合成和产品的烧成;而国内普遍采用合成的堇青石配料,经过挤出成型、干燥、切割后再烧成,致使堇青石原料中堇青石晶粒之间的孔被压塌陷,最终产品中的孔主要是堇青石二次颗粒之间的孔。据此认为,我国应努力研究堇青石的一次合成(烧成)工艺,这既能提高产品性能又能降低能源消耗。  相似文献   

10.
3D structured SiC ceramics with varying feature sizes (100–400?μm) were achieved by direct ink writing of polycarbosilane (PCS)/n-hexane solution. The rheological properties of the PCS solution and printing parameters were tailored for optimum writing behaviour. The integrity and clear surface of the filaments indicated the printing ability of forming the self-supporting features along with the rapid evaporation of solvent. As-printed 3D structured PCS was processed by oxidative crosslinking and pyrolysis and converted to SiC ceramic. Although strong shrinkage occurred during the pyrolysis, SiC ceramic maintained the original 3D structure. Both proper viscoelasticity of printable solutions and the homogeneous shrinkage in the pyrolysis determine the integrity and feature characteristic of 3D structured SiC using direct ink writing preceramic polymer.  相似文献   

11.
The rheological parameters for a cordierite honeycomb extrusion were investigated using the Benbow–Bridgwater model. The extrusion pastes were formulated using typical binders, plasticizers, lubricants and pore-forming agents normally used for such extrusions. Pastes were found to have good pseudo-plasticity, low bulk yield and very low die-land shear stress, compared with the velocity dependent components of the respective pressure drops. In some formulation, reduced velocity contribution to the extrusion pressure with increased binder content found useful for better honeycomb extrusion. These characteristics of the honeycomb extrusion batches were analyzed by using dynamic bulk and shear stress components derived from the Benbow–Bridgwater six-parameter model and compared with the results of honeycomb extrusion trials. Plasticizing agents like polyethylenglycol (PEG) and glycerin were found to decrease the die entry pressure but showed no external lubricating effect leading to higher die-land pressure. Pore-forming agent, graphite was found to reduce both die entry and die land pressures, whereas, carbon increases the die entry pressure.  相似文献   

12.
《Ceramics International》2022,48(6):8118-8124
In this study, transparent AlON ceramics were fabricated via the direct ink writing (DIW) method from the water-based ceramic slurry. The solids loading of the ceramic slurry was optimised by changing the dispersant content, and the printability and water content were then adjusted by adding hydroxyethyl cellulose (HEC). The structure of the green body was complete and no impurity phases were detected. The effects of sintering temperature and dwell time on the bulk density, phase evolution, microstructure, in-line transmittance, and mechanical properties of the ceramics were studied systematically. High optical and mechanical properties of 10 × 10 × 0.9 mm3 single-phase AlON ceramic tiles were obtained by sintering at 1960 °C for 10 h in a nitrogen atmosphere: in-line transmittance of 81.90% at a wavelength of 780 nm, fracture toughness of 1.74 MPa·m1/2 (2.94 N), and Vickers hardness of 18.56 GPa (2.94 N). This study provides a novel method for synthesising AlON transparent ceramics from water-based ceramic slurries.  相似文献   

13.
The chopped carbon fiber reinforced SiC (Cf/SiC) composite has been regarded as one of the excellent high-temperature structural materials for applications in aerospace and military fields. This paper presented a novel printing strategy using direct ink writing (DIW) of chopped fibers reinforced polymer-derived ceramics (PDCs) with polymer infiltration and pyrolysis (PIP) process for the fabrication of Cf/SiC composites with high strength and low shrinkage. Five types of PDCs printing inks with different Cf contents were prepared, their rheological properties and alignment of carbon fiber in the printing filament were studied. The 3D scaffold structures and bending test samples of Cf/SiC composites were fabricated with different Cf contents. The results found that the Cf/SiC composite with 30 wt% Cf content has high bending strength (~ 7.09 MPa) and negligible linear shrinkage (~ 0.48%). After the PIP process, the defects on the Cf/SiC composite structures were sufficiently filled, and the bending strength of Cf/SiC composite can reach up to about 100 MPa, which was about 30 times greater than that of the pure SiC matrix without Cf. This work demonstrated that the printed Cf/SiC composites by using this method is beneficial to the development of the precision and complex high-temperature structural members.  相似文献   

14.
《Ceramics International》2021,47(24):34050-34058
Porous vitrified bond grinding wheels with complex structure, high porosity, controllable pore size have fundamental application in high efficiency and precision grinding of hard and brittle materials. In this paper, direct ink writing (DIW) is proposed to fabricate three kinds of grinding wheels, including solid structure, triangle structure, and lattice structure. Moreover, the rheological property of ceramic ink with different doses of xanthan gum (XG) solution was investigated to ensure printability, demonstrating 3% XG solution can meet requirements. Additionally, the effect of sintering temperature and pore former (PMMA) contents on size shrinkage rate, morphology, mechanical strength, and porosity et al. were studied. The results indicate that the diamond grinding wheel with 30 vol% PMMA and sintered at 670 °C possess the best comprehensive performance. Besides, grinding performance was evaluated by surface morphology, surface roughness, and material removal rate. Among the DIW-fabricated wheels, triangle structure grinding wheel and lattice structure grinding wheel possess a higher material removal rate than solid structure grinding wheel. Therefore, the porous structure grinding wheels fabricated by DIW present the advantage of controllable porosity, excellent self-sharpening ability, and higher bond strength, which may pave the way for designing a new generation vitrified bond diamond grinding wheel.  相似文献   

15.
Si2N2O composites were achieved via direct ink writing technique and pressureless sintering. The design and optimization of inks and the effect of mass ratio of Si3N4 and SiO2 on the phase composition, microstructure, mechanical properties and dielectric properties of composites were systematically investigated. The inks exhibit superior stability and printability. Increasing SiO2 content facilitated densification and enhancement of mechanical property. The generation of β-Si3N4 and Si2N2O and the nucleation of cristobalite were restrained by high content SiO2. The ceramic composites with the flexural strengths from 74.1MPa to 104.9MPa and low dielectric constant (≤4.68) were fabricated. This strategy provides a systematic reference for synthesis of high-performance porous Si2N2O composites based on the DIW.  相似文献   

16.
We present the development of an ink containing chopped fibers that is suitable for direct ink writing (DIW), enabling to obtain ceramic matrix composite (CMC) structures with complex shape. We take advantage of the unique formability opportunities provided by the use of a preceramic polymer as both polymeric binder and ceramic source. Inks suitable for the extrusion of fine filaments (<1 mm diameter) and containing a relatively high amount of fibers (>30 vol% for a nozzle diameter of 840 μm) were formulated. Despite some optimization of ink rheology still being needed, complex CMC structures with porosity of ~75% and compressive strength of ~4 MPa were successfully printed. The process is of particular interest for its ability to orient the fibers in the extrusion direction due to the shear stresses generated at the nozzle tip. This phenomenon was observed in the production of polymer matrix composites, but it is here employed for the first time for the production of ceramic matrix ones. The possibility to align high aspect ratio fillers using DIW opens the path to layer‐by‐layer design for optimizing the mechanical and microstructural properties within a printed object, and could potentially be extended to other types of fillers.  相似文献   

17.
《Ceramics International》2019,45(14):17262-17267
A novel method is proposed for fabricating highly oriented carbon fibre reinforced SiC ceramic composites (Cf/SiC) by direct ink writing (DIW). For the first time, the control of carbon fibers’ orientation in DIW was studied by numerical simulation. An interfacial layer was prepared by chemical vapor infiltration (CVI). The microstructure and phase composition of Cf/SiC were studied by scanning electron microscopy and X-ray diffraction, respectively. The results showed that fibers of different interfacial thicknesses could be obtained effectively by varying the CVI time. The breakage of short fibres remarkably improved the fracture toughness of the parts. The specimens showed excellent mechanical properties with bending strength of 274 ± 13 MPa and fracture toughness of 5.82 ± 0.25 MPa m1/2. This method could be extended to the preparation of other resin and ceramic composites.  相似文献   

18.
The in-situ mullite (3Al2O3·2SiO2) foams are fabricated by 3D printing (direct ink writing (DIW)) technique and utilize waste rice husk ash (RHA). The Al2O3-SiO2 inks are prepared using an aqueous binder with α-alumina and two different silica sources, i.e., RHA extracted biogenic nano-silica (NS) and commercial silica (CS). The ink rheological features are first designed in terms of solid-to-liquid ratio and dispersant, and found that a higher amount of dispersant is needed for functionalization of NS-containing ink than CS (micro-sized) consisting of ink. Secondly, the DIW log-pile structures are fired at different temperatures (1200?1500 °C), and NS containing samples exhibited remarkable enhanced properties at a lower firing temperature than CS. At 1400 °C, alumina and RHA nano-silica entirely transformed into mullite and retained ~75 % porosity, ~8 MPa cold compressive strength, and thermal conductivity ~0.173 W/m·k that designate a simple and effective way to fabricate of mullite foamy structure.  相似文献   

19.
工业窑炉蓄热式换热器用莫来石质蜂窝陶瓷的研制   总被引:2,自引:0,他引:2  
以高铝矾土、粘土、莫来石为主要原料 ,添加适量硅线石、红柱石和蓝晶石 ,用挤出成型法制备了蜂窝陶瓷。利用TG -DTA分析了在烧成过程中所发生的物理化学变化 ;X射线衍射分析结果表明 ,材料的主晶相为莫来石。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号