首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The NASICON type solid electrolyte LATP is a promising candidate for all-solid-state Li-ion batteries considering energy density and safety aspects. To ensure the performance and reliability of batteries, crack initiation and propagation within the electrolyte need to be suppressed, which requires knowledge of the fracture characteristics. In the current work, micro-pillar splitting was applied to determine the fracture toughness of LATP material for different grain orientations. The results are compared with data obtained using a conventional Vickers indentation fracture (VIF) approach. The fracture toughness obtained via micro-pillar splitting test is 0.89 ± 0.13 MPa?m1/2, which is comparable to the VIF result, and grain orientation has no significant effect on the intrinsic fracture toughness. Being a brittle ceramic material, the effect of pre-existing defects on the toughness needs to be considered.  相似文献   

2.
Garnet structured Al-substituted Li7La3Zr2O12 (Al:LLZO) is a promising candidate as electrolyte in all-solid-state Li-ion batteries due to its chemical stability against Li-metal and high voltage cathode materials. In order to ensure long-term stable operation, electrolyte crack growth induced and/or the volume change of the active material on the cathode side needs to be avoided, requiring in particular knowledge of local and global mechanical properties of the electrolyte material. Micro-pillar splitting test was used for the first time on this material to determine the microscopic fracture toughness of single grains and compare it with conventional Vickers indentation fracture toughness (VIF), which represents macroscopic fracture toughness. Both methods yielded comparative results. In conclusion, the micro-pillar splitting test can be used as an advanced locally resolved characterization method that can open up new experimental directions for characterizing and understanding battery materials and enable a targeted approach for material improvements.  相似文献   

3.
Free-standing Li1.5Al0.5Ti1.5P3O12 electrolyte sheets with a thickness of 50–150 μm were prepared by tape casting followed by sintering at 850–1000 °C in air. While a sintering temperature of 850 °C was too low to achieve appreciable densification and grain growth, a peak relative density of 95% was obtained at 920 °C. At higher sintering temperatures, the microstructure changed from a bimodal grain size distribution towards exclusively large grains (> 10 μm), accompanied by a decrease in relative density (down to 86% at 1000 °C). In contrast, ionic conductivity increased with increasing sintering temperature, from 0.1 mS/cm at 920 °C to 0.3 mS/cm at 1000 °C. Sintering behavior was improved by adding 1.5% of amorphous silica to the slurry. In this way, almost full densification (99.8%) and an ionic conductivity of 0.2 mS/cm was achieved at 920 °C.Mechanical characterization was carried out on the almost fully densified material, yielding elastic modulus and hardness values of 109 and 8.7 GPa, respectively. The fracture strength and Weibull modulus were also characterized. The results confirm that densification and reduction of grain size improve the mechanical properties.  相似文献   

4.
《Ceramics International》2022,48(18):25689-25695
Al-doped Li7La3Zr2O12 (Al–LLZO) solid electrolytes were sintered at 1150 °C for 8 h in atmosphere of oxygen, argon and air (named as Al–LLZO–O2, Al–LLZO–Ar and Al–LLZO–Air, respectively). All the Al–LLZO samples exhibited a single cubic garnet-type structure. The sample of Al–LLZO–O2 possessed the highest relative density (95.60%) and the largest average grain size among the three Al–LLZO samples. Furthermore, owing to its high relative density and small number of grain boundaries, Al–LLZO–O2 demonstrated a higher lithium-ion conductivity than Al–LLZO–Ar and Al–LLZO–Air.  相似文献   

5.
《Ceramics International》2023,49(16):26719-26725
The effect of MnO2 additives on the sintering behavior and mechanical properties of alumina-toughened zirconia (ATZ, with 10 vol% alumina) composites was investigated by incorporating different amounts of MnO2 (0, 0.5, 1.0, and 1.5 wt%) and sintering at various temperatures ranging from 1300 to 1450 °C. The addition of MnO2 up to 1.0 wt% improved the sintered density, hardness, flexural strength, and fracture toughness of the composite. However, the addition of 1.5 wt% MnO2 degraded the relative density, hardness, and flexural strength of the composite due to the transformation of the ZrO2 phase from tetragonal to monoclinic and grain coarsening. Optimal results were obtained with 1.0 wt% MnO2 and sintering at 1450 °C, which improved the mechanical properties (hardness: 13.5 GPa, flexural strength: 1.2 GPa, fracture toughness: 8.5 MPa m1/2) and lowered the sintering temperature compared to the conventional sintering temperature of ATZ composites (1550 °C). Thus, the ATZ composite doped with MnO2 is a promising material for structural engineering ceramics owing to its improved mechanical properties and lower sintering temperature.  相似文献   

6.
《Ceramics International》2020,46(3):2585-2591
SiO2-MgO ceramics containing different weight fractions (0, 0.5, 1, 2, and 4 wt%) of SiO2 powder were prepared by mixing nano MgO powder, and the powder mixtures were densified by spark plasma sintering (SPS). The effect of SiO2 addition and SPS method on the sintering behavior, microstructure and mechanical properties were investigated. Results were compared to specimens obtained by conventional hot pressing (HP) under a similar sintering schedule. The highest relative density, flexural strength and hardness of 2 wt% SiO2-MgO ceramics reached 99.98%, 253.99 ± 7.47 MPa and 7.56 ± 0.21 GPa when sintered at 1400 °C by SPS, respectively. The observed improvement in the sintering behavior and mechanical properties are mainly attributed to grain boundary "strengthening" and intragranular "weakening" of the MgO matrix. Furthermore, the spark plasma sintering temperature could be decreased by more than 100 °C as compared with the HP method, SPS favouring enhanced grain boundary sliding, plastic deformation and diffusion in the sintering process.  相似文献   

7.
《应用陶瓷进展》2013,112(1):13-20
Sintered diopside glass ceramics were successfully prepared from mixtures of blast furnace slag, fly ash and mining tailing. Results showed that sample C2 with relatively low iron oxides and mass ratio of CaO/SiO2 possessed the highest bending strength value among samples. A low content of iron oxide enhanced densification degree because pores were developed by reduction of ferric oxide into ferrous oxide. Moreover, a low CaO/SiO2 mass ratio also greatly promoted the densification process by prolonging the sintering time and delaying the crystallisation. In addition, sample C1 developed by one-stage sintering had a worse mechanical performance than that obtained by two-stage sintering although they had the same crystals. For all samples, despite of different compositions and sintering processes, the main crystal phases are augite and diopside ferrian.  相似文献   

8.
Mechanical properties and microstructure were compared for zirconium diboride and two zirconium diboride solid solutions containing 3 and 6 at% tantalum diboride. X-ray diffraction indicated that the ceramics were nearly phase-pure and that tantalum dissolved into the ZrB2 lattice to form (Zr,Ta)B2 solid solutions. Microstructural analysis indicated that samples achieved nearly full relative density with average grain sizes that ranged from 3?5 μm. The three compositions had similar values of Young’s modulus (510?531 GPa), shear modulus (225?228 GPa), Vickers hardness (15.2–16.4 GPa), and flexural strength (391?452 MPa). Fracture toughness ranged from 2.6 to 3.7 MPa m1/2 and with increasing tantalum content, the fracture mode changed from predominantly intergranular to predominantly transgranular. Diboride solid solution materials had comparable properties to the single metal diboride, but differences in microstructure, secondary phases, and strain state among the three ceramics partially obscured the actual effects of the solid solution on fracture behavior.  相似文献   

9.
《Ceramics International》2017,43(4):3647-3653
This study investigated the effect of sintering temperature on the microstructure and mechanical properties of dental zirconia-toughened alumina (ZTA) machinable ceramics. Six groups of gelcast ZTA ceramic samples sintered at temperatures between 1100 °C and 1450 °C were prepared. The microstructure was investigated by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The mechanical properties were characterized by flexural strength, fracture toughness, Vickers hardness, and machinability. Overall, with increasing temperature, the relative density, flexural strength, fracture toughness, and Vickers hardness values increased and more tetragonal ZrO2 transformed into monoclinic ZrO2; on the other hand, the porosity and pore size decreased. Significantly lower brittleness indexes were observed in groups sintered below 1300 °C, and the lowest values were observed at 1200 °C. The highest flexural strength and fracture toughness of ceramics reached 348.27 MPa and 5.23 MPa m1/2 when sintered at 1450 °C, respectively. By considering the various properties of gelcast ZTA that varied with the sintering temperature, the optimal temperature for excellent machinability was determined to be approximately 1200–1250 °C, and in this range, a low brittleness index and moderate strength of 0.74–1.19 µm−1/2 and 46.89–120.15 MPa, respectively, were realized.  相似文献   

10.
《Ceramics International》2016,42(9):10593-10598
The optimized sintering conditions for a 3.5 wt% magnesia partially stabilized zirconia (Mg-PSZ) refractory were proposed in our recent research. The influence of the sintering temperature on the development of phase composition, microstructure, densification, thermal expansion and mechanical strength was studied in detail by X-ray diffraction (XRD), scanning electron microscope (SEM), He-pycnometer, high temperature dilatometry and three-point bending test. The samples sintered at 1670 °C had the highest bend strength, the maximum densification, the lowest thermal expansion coefficient (CTE), a homogeneous microstructure and a linear change in thermal expansion.  相似文献   

11.
《Ceramics International》2022,48(7):9673-9680
Solid oxide fuel cells (SOFCs) have strong potential for next-generation energy conversion systems. However, their high processing temperature due to multi-layer ceramic components has been a major challenge for commercialization. In particular, the constrained sintering effect due to the rigid substrate in the fabrication process is a main reason to increase the sintering temperature of ceramic electrolyte. Herein, we develop a bi-layer sintering method composed of a Bi2O3 sintering sacrificial layer and YSZ main electrolyte layer to effectively lower the sintering temperature of the YSZ electrolyte even under the constrained sintering conditions. The Bi2O3 sintering functional layer applied on the YSZ electrolyte is designed to facilitate the densification of YSZ electrolyte at the significantly lowered sintering temperature and is removed after the sintering process to prevent the detrimental effects of residual sintering aids. Subsequent sublimation of Bi2O3 was confirmed after the sintering process and a dense YSZ monolayer was formed as a result of the sintering functional layer-assisted sintering process. The sintering behavior of the Bi2O3/YSZ bi-layer system was systematically analyzed, and material properties including the microstructure, crystallinity, and ionic conductivity were analyzed. The developed bi-layer sintered YSZ electrolyte was employed to fabricate anode-supported SOFCs, and a cell performance comparable to a conventional high temperature sintered (1400 °C) YSZ electrolyte was successfully demonstrated with significantly reduced sintering temperature (<1200 °C).  相似文献   

12.
A new method to weaken the interfacial bonding and increase the strength of 3D mullite fiber reinforced mullite matrix (Muf/Mu) composites is proposed and tested in this paper. Firstly, Muf/Mu composites were fabricated through sol–gel process with varied sintering temperature. Then, the effects of sintering temperature on mechanical properties of the composites were tested. As sintering temperature was raised from 1000 °C to 1300 °C, the three-point flexural strength of the composites firstly decreased from 66.17 MPa to 41.83 MPa, and then increased to 63.17 MPa. In order to explain the relationship between composite strength and sintering temperature, morphology and structure of the mullite fibers and mullite matrix after the same heat-treatment as in the fabrication conditions of the composites were also investigated. Finally, it is concluded that this strength variation results from the combined effects of matrix densification, interfacial bonding and fiber degradation under different sintering temperatures.  相似文献   

13.
NASICON (Sodium superionic conductor) type Na3Zr2Si2PO12 (NZSP) has received a lot of interest as the solid electrolyte for all-solid-state sodium-ion batteries (ASSIBs). The electrolyte has superior interfacial characteristics, high thermal stability, and good ionic conductivity. Because of their higher energy density, improved mechanical stability, no liquid leakage problem, and higher operating voltages, All solid-state batteries are expected to replace liquid electrolyte-based batteries in many applications. The solid electrolyte also acts as a separator, and hence additional separator is not required for cell operations. Because of its 3D open architecture and continuous diffusion channels, NZSP is considered a better solid electrolyte. The NZSP solid electrolyte has been synthesized by spark plasma sintering (SPS) followed by annealing the sintered materials. The SPS method leads the material to have higher density and ionic conductivity. Conventional sintering of the materials requires a temperature as high as 1225°C; however, the temperature required for the SPS is as low as 1050°C. Moreover, conventional sintering yields samples of relative density up to 91%, while SPSed samples have achieved a maximum density of around 98%. The ionic conductivity of solid electrolyte SPSed at 1050°C for 10 min is found to be 3.5 × 10−4 S/cm with an activation energy of 0.27 eV. The annealing of the SPSed samples improves the ionic conductivity of the SPS1050-20mins sample to roughly double the value obtained from the as-prepared SPS sample because there are fewer secondary phases and a structural change from a rhombohedral to a monoclinic system. To ascertain the samples' crystal structure, particle shape, and ionic conductivity, materials were characterized using X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The samples' mechanical characteristics, for example, the hardness and fracture toughness of the samples, were also determined.  相似文献   

14.
How to obtain dense La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) electrolyte at low sintering temperature (<1300 °C) is a challenge to improve solid oxide fuel cell (SOFC) performance at intermediate operation temperature. In this study, a double-layer design method for vacuum cold spray (VCS) prepared-LSGM electrolyte assisted with two-step sintering at a low temperature was proposed. The sintering behavior of VCS deposited LSGM layers at 1200 °C was investigated. The LSGM layers became denser in most regions except the appearance of some cracks. Subsequently, the effect of a second LSGM layer on the sintered top layer was studied to block cracks. Results showed that the co-sintered layer with a thickness of approximately 5 μm presented a maximum open circuit voltage of ∼0.956 V at 650 °C and a maximum power density of 592 mW/cm2 at 750 °C. Result indicates that the sintering assisted VCS is a promising method to prepare the LSGM electrolyte applied in intermediate temperature SOFCs.  相似文献   

15.
《Ceramics International》2016,42(16):18053-18057
LZAS glass-ceramic composites toughened by 5, 10, 15 and 20 vol% 3-mol%-Y2O3-tetragonal-ZrO2-polycrystal (3Y-TZP) were prepared via pressureless sintering. Sinterability of composites was investigated in the temperature range of 520–720 °C using soaking time of 30 min. The sintered specimens were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. The results revealed that during sintering 3Y-TZP particles agglomerated between the glass powders and were not dissolved by glass-matrix. Mechanical properties of the sintered samples such as bending strength, Vickers micro-hardness and fracture toughness were also investigated. Measurements showed that the relative density of the samples decreased with increasing 3Y-TZP content. The composite containing 15 vol% 3Y-TZP has a best mechanical properties and it would be the optimum composition. It can be confirmed that crack deflection and transformation toughening are the dominant mechanisms for improving mechanical properties of the composites.  相似文献   

16.
《Ceramics International》2020,46(17):26784-26789
Effect of sintering temperature on the physical and mechanical properties of synthesized B-type carbonated hydroxyapatite (CHA) over a range of temperature in CO2 atmosphere has been investigated. The B-type CHA in nano size was synthesized at room temperature by using a direct pouring wet chemical precipitation method. The synthesized CHA powders were subsequently consolidated by sintering treatment from 800 to 1100 °C. The sintered CHA samples were evaluated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, X-ray fluorescence (XRF), carbon-hydrogen-nitrogen-sulfur-oxygen (CHNS/O) elemental analyzer, Field emission scanning electron microscopy (FESEM), and Vicker's indentation technique. The results obtained from XRD and FESEM indicated that the synthesized B-type CHA powders were nanometer in size. The crystallinity and crystallite size of the sintered CHA samples were increased due to increasing sintering temperature. The heat treatment between 800 °C and 1000 °C has resulted in coarsening and increased hardness of the sintered CHA samples. However, these properties began to deteriorate when sintering beyond 1100 °C due the formation of calcium oxide.  相似文献   

17.
We investigated the sintering temperature dependency on the properties of Na2Zn2TeO6 (NZTO) solid electrolyte synthesized via a conventional solid-state reaction method. Sintering temperature of calcined NZTO powder, which was obtained by the calcination of precursor at 850℃, was changed in the range from 650 to 850℃. X-ray diffraction analysis showed that P2-type layered NZTO phase was formed in all sintered samples without forming any secondary phases. The relative densities of sintered NZTO samples were approximately 83%−85% for the samples sintered at 700℃ or higher. The all sintered samples showed sodium-ion conductivity above 10−4 S cm−1 at room temperature and the highest conductivity of 4.0 × 10−4 S cm−1 in the sample sintered at 750℃. The sintering temperature to obtain the highest room temperature conductivity is 100℃ lower than that used in previous works. Such low sintering temperature compared to other Na-based oxide solid electrolytes could be useful for co-sintering with electrode active materials for fabrication of all-solid-state sodium-ion battery.  相似文献   

18.
《Ceramics International》2017,43(7):5642-5646
Perovskite-structured Li3/8Sr7/16Zr1/4Nb3/4O3 solid-state Lithium-conductors were prepared by conventional solid-state reaction method. Influence of sintering aids (Al2O3, B2O3) and excess Lithium on structure and electrical properties of Li3/8Sr7/16Zr1/4Nb3/4O3 (LSNZ) has been investigated. Their crystal structure and microstructure were characterized by X-ray diffraction analysis and scanning electron microscope, respectively. The conductivity and electronic conductivity were evaluated by AC-impedance spectra and potentiostatic polarization experiment. All sintered compounds are cubic perovskite structure. Optimal amount of excess Li2CO3 was chosen as 20 wt% because of the total conductivity of LSNZ-20% was as high as 1.6×10−5 S cm−1 at 30 °C and 1.1×10−4 S cm−1 at 100 °C, respectively. Electronic conductivity of LSNZ-20% is 2.93×10−8 S cm−1, nearly 3 orders of magnitude lower than ionic conductivity. The density of solid electrolytes appears to be increased by the addition of sintering aids. The addition of B2O3 leads to a considerable increase of the total conductivity and the enhancement of conductivity is attributed to the decrease of grain-boundary resistance. Among these compounds, LSNZ-1 wt%B2O3 has lower activation energy of 0.34 eV and the highest conductivity of 1.98×10−5 S cm−1 at 30 °C.  相似文献   

19.
《Ceramics International》2023,49(2):1980-1986
LiTa2PO8 (LTPO) is a new solid-state electrolyte material, which has high bulk ionic conductivity and low grain boundary ion conductivity. However, the conductivity of materials synthesized by conventional methods is much lower than the theoretically calculated values. In this work, large radius Te ion are doped at Ta (3)-site in order to enlarge the lattice parameters and increase Li content, which are beneficial for increasing ionic conductivity. The Te substitution changes the Ta surrounding environment, increases the binding capacity of Ta–O, and reduces the attraction of oxygen to lithium ions in the system. The prepared dense Li1.04Ta1.96Te0.04PO8 ceramic electrolyte exhibits a low activation energy of 0.193 eV and four times higher ion conductivity (4.5 × 10?4 S cm?1) than undoped samples. Moreover, Li1.04Ta1.96Te0.04PO8 shows a stable cycling performance in the symmetric Li/Li cells and the Li/CPE/Li1.04Ta1.96Te0.04PO8/LiFePO4 batteries with the separation of a thin PEO membrane.  相似文献   

20.
《Ceramics International》2022,48(20):30144-30150
High-capacity and affordable all-solid-state Na-ion batteries have gathered increasing interest in recent years owing to low-cost sodium, which contributes to reducing the price of these Na-ion batteries to approximately 70% of that in lithium batteries. However, in terms of electrolyte performance and battery cost, the complete replacement of lithium batteries has a long way to go. In this work, low-cost and high-safety Na2S·9H2O materials are used in synthesizing Na3SbS4 solid electrolyte, the price of which is only one-fifth that of high-purity Na2S. The structure and electrochemical properties are studied through X-ray diffraction analysis, Raman spectroscopy, scanning electron microscopy, and electrochemical tests. Results indicate that a multiphase Na3SbS4 structure containing cubic and tetragonal phases formed after heat treatment at 300 °C. In addition, a third phase transition of Na3SbS4 is inferred after further heating at 600 °C. This phase structure contributes to the improvement of electrochemical performance by promoting increasing ionic conductivity to 0.54 mS cm?1 at room temperature (25 °C) and reducing activation energy to 0.076 eV. This work provides an affordable material with good electrochemical properties and not only simplifies the preparation but also greatly reduces the risk of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号