首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Elongated mullite was synthesized using mullite powder as a raw material and AlF3·3H2O as an additive, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The effects of AlF3·3H2O content and reaction temperature on the formation of elongated mullite were investigated, and the relevant growth mechanism was discussed based on the experimental results and density functional theory (DFT) calculations. When the optimal amount of AlF3·3H2O (4?wt% in the present work) was used, the length and diameter of elongated mullite increased with increasing the reaction temperature, and elongated mullite of 22.3?µm in average length and 4.6?µm in average diameter was formed after 5?h at 1873?K. Based on the results, elongated mullite self-reinforced porous ceramics were prepared by a combined foam-gelcasting and solid-reaction method, and their mechanical properties were examined. Elongated mullite in-situ formed in the porous samples evidently enhanced their mechanical strength. The flexural strength of the elongated mullite self-reinforced porous sample with 67.0% porosity (prepared using 6?wt% AlF3·3H2O) was as high as 13.9?MPa, which was about 26.4% higher than that of a porous sample (11.0?MPa) prepared without AlF3·3H2O.  相似文献   

2.
This work presents the preparation of porous alumina ceramics through the sacrificial phase method, using an eco-friendly material, namely waste coffee grounds, as a pore-forming agent. The effects of coffee grounds content in the green ceramic bodies on the linear and volumetric shrinkage, as well as the total and open porosity of the sintered product, were evaluated. The influence of the resulting porosity on mechanical properties of the prepared porous alumina was determined using Brazilian disk compression test for the determination of the indirect tensile strength of the prepared samples. Microstructure and pores morphology were characterized by scanning electron microscopy. Porosities in the range 35-54 vol% were achieved, by varying the coffee grounds content from 0 to 50 wt% in the green bodies. The indirect tensile strength of the final obtained porous alumina ceramic decreased accordingly from 57.4 MPa to 17.7 MPa.  相似文献   

3.
This study proposes camphene/photopolymer solutions as a novel pore-forming agent for the photocuring-assisted additive manufacturing of porous ceramics. Unlike conventional techniques using molten camphene, solid camphene can be directly dissolved in the photocurable monomer hexanediol diacrylate (HDDA) at room temperature, which can then crystallize with a dendrite-like morphology based on phase separation at lower temperatures. This unique approach allows alumina suspensions to solidify at ―2 °C and then effectively be photopolymerized using a digital light processing engine, resulting in camphene-rich crystals surrounded by photopolymerized alumina/HDDA walls. Sintered samples exhibited a highly porous structure, with the pores created after the removal of the camphene-rich crystals. Two different pore sizes were obtained in the lower and upper regions of a single layer, due to a decrease in the solidification rate along the building direction, although their porosities were similar (~ 52 vol%). The porous samples exhibited a compressive strength of ~ 265 MPa.  相似文献   

4.
The mechanical performance and chemical stability of porous alumina materials operating under harsh service conditions are of utmost importance in understanding their operational behavior if they are to stand the test of time. In the present study, the joint effect of nickel (Ni) reinforcement and rice husk (RH) pore-forming agent (PFA) on the tensile strength and the corrosion resistance properties of composite porous alumina ceramics was studied. To exploit the potential of this new porous alumina system, plain and Ni-reinforced porous alumina samples (Al2O3-xNi-RH; x?=?2, 4, 6 and 8?wt%) were developed through the powder metallurgy technique. Comprehensive investigation on the tensile strength properties of the developed porous alumina ceramics showed that relative to the plain sample (tensile strength and elastic modulus; 6.1?MPa and 1201?MPa), the presence of highly stable Ni3Al2SiO8 spinelloid promoted the tensile strength enhancement (12.6–6.4?MPa) and the elastic modulus decline (897–627?MPa) of the composite samples. Similarly, corrosion resistance test was performed on the composite porous alumina samples in both 10?wt% NaOH and 20?wt% H2SO4 hot aqueous solutions. Overall, the composite samples demonstrated superior chemical stability in NaOH solution as compared with the plain sample. On the other hand, the composites were more prone to attack in H2SO4 solution, except for the Al2O3-2Ni-10RH composite sample which maintained its superiority over the plain counterpart.  相似文献   

5.
An innovative approach for fabricating porous alumina ceramics (PACs) with improved mechanical and thermal properties using walnut shell powders as pore-forming agent combined with alumina sol impregnation is reported in the present work. It is demonstrated that uniform distribution of spherical pores can be observed in as-prepared PACs by using above technical route. The decrease of walnut shell powder sizes significantly promotes the enhancement of crushing strength and reduction of thermal conductivity of the PACs. Meanwhile, the impregnated alumina sol is favoring for the formation of spherical micro-pores, then further improves their mechanical and thermal insulation performances. The lowest thermal conductivity and highest crushing strength of resulting sample reach 0.16?W/m?K and 29.2?MPa, respectively. This novel method offers new possibilities to fabricate high-quality PACs.  相似文献   

6.
《Ceramics International》2022,48(20):30356-30366
Calcium hexaluminate (CA6) porous ceramics were prepared by gel-casting method, with α-Al2O3 and CaCO3 as raw materials and polymethyl methacrylate (PMMA) microspheres as pore-forming agent. The effects of the amount of pore-forming agent PMMA microspheres on the phase composition, bulk density, apparent porosity, flexural strength, microstructure, thermal shock stability and thermal conductivity of CA6 porous ceramics were systematically studied. The pores of CA6 porous ceramics are mainly formed by the burning loss of PMMA microspheres and the decomposition of organic matter. Adding an appropriate amount of PMMA microspheres as pore-forming agent has a positive effect on the thermal shock stability of CA6 porous ceramics. When the amount of pore-forming agent is 15 wt%, the volume density of CA6 porous ceramics is 1.33 g/cm3, the porosity is 63%, the flexural strength is 13.9 MPa, the thermal shock times can reach 9 times, and the thermal conductivity is 0.293 W/(m·K), which can meet the application in refractory, ceramics or high temperature cement industries.  相似文献   

7.
《Ceramics International》2019,45(13):16470-16475
Porous SiC ceramics combine the properties of both SiC ceramics and porous materials. Herein, we design a facile method via pressureless sintering at relatively low temperatures for the synthesis of porous SiC ceramics. In the synthesis process, phosphoric acid was used as the sintering additive that reacted with SiO2 on the surface of SiC to form phosphates. The formed phosphates acted as a binder to connect the SiC particles. At a fixed temperature, the phosphates were partially decomposed and released a large amount of gas. This changed the pore structure of the ceramics and greatly improved their porosity. Finally, we obtained the porous SiC ceramics with high porosity and high strength. We investigate the effects of H3PO4 content on the phase composition, microstructure, porosity, mechanical properties and thermal expansion coefficient of the prepared porous SiC ceramics. It was shown that at the sintering temperature of 1200 °C, the highest porosity of the samples can reach 70.42% when the H3PO4 content is 25 wt%, and their bending strength reaches 36.11 MPa at room temperature when the H3PO4 content is 15 wt%. In addition, the porous SiC ceramics show good high-temperature stability with a bending strength of 42.05 MPa at 1000 °C and the thermal expansion coefficient of 3.966 × 10−6/°C.  相似文献   

8.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

9.
《Ceramics International》2016,42(7):8221-8228
In the present work, carbon black (CB) works as a pore-forming agent in the preparation of alumina porous ceramics. The pore structures (i.e. mean pore size, pore size distribution and various pores size proportions) were characterized by means of Micro-image Analysis and Process System (MIAPS) software and mercury intrusion porosimetry. Then their correlation and thermal conductivity as well as strength were determined using grey relation theory. The results showed that the porosity and mean pore size increased against the amount of CB, whereas the thermal conductivity, cold crushing strength and cold modulus of rupture reduced. The <2 μm pores were helpful for enhancing the strength and decreasing the thermal conductivity whereas the >14 μm pores had the opposite effects.  相似文献   

10.
The present study demonstrates a cost effective way to fabricate porous ceramics with tailored microstructures using rice husk (RH) of various range of particle sizes as a pore former and sucrose as a binder as well as a pore former. Sample microstructures reveal randomly oriented elongated coarse pores and fine pores (avg. size 4 μm) created due to burnout of RH and sucrose, respectively. Porous alumina ceramics with 20–66 vol% porosity and 50–516 μm avg. pore size (length), having isolated and/or interconnected pores, were fabricated using this process. Mechanical properties of the porous samples were determined as a function of porosity and pore microstructure. The obtained porous ceramics exhibited flexural strength of 207.6–22.3 MPa, compressive strength of 180–9.18 MPa, elastic modulus of 250–18 GPa and hardness of 149–18 HRD. Suggested application area includes thermal, filtration, gas purging etc.  相似文献   

11.
《Ceramics International》2016,42(12):13882-13887
A highly porous alumina body was fabricated by heating a green clinker body consisting of platelets and yeast fungi as a pore forming agent. Four kinds of alumina platelets were used. When green clinker bodies of platelet aggregates (A11) with 10 and 30 mass% of yeast fungi were heated at 1500 °C for 2 h, their porosities reached 72% and 78%, respectively. In contrast, when the green clinker bodies composed of platelets with an average size of 10 µm and an aspect ratio of 25–30 (SERATH①), and 20 mass% of yeast fungi were heated at 1400 °C for 2 h, the porosity of the resultant porous alumina body was also approximately 72%. However, the room temperature thermal conductivities of the porous alumina bodies with 72% porosity derived from A11 and SERATH① were 0.86 and 0.50 W m−1 K−1, respectively. The decrease in the thermal conductivity of the porous alumina body produced from SERATH① is caused by the long path route for heat transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号