首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
在0.1 mol/L NaClO4溶液中研究了Pu(Ⅴ)与H2O2反应的动力学。测定了Pu(Ⅴ)与H2O2的反应速率。探讨了温度以及Fe2 ,SO42-,HCO3-,F-等无机离子的存在对反应的影响。实验结果表明,反应对Pu(Ⅴ)与H2O2呈一级,对溶液中H 呈-1级;速率方程可表示为:-dc(Pu(Ⅴ))dt=(3.93±1.93)×10-9c(Pu(Ⅴ))c(H2O2)c(H )。随着温度升高,反应速率明显加快,根据Arrhenius规律,计算出了反应的活化能为Ea=84 kJ/mol。地下水中Fe2 ,SO42-,HCO3-,F-等离子的存在,有利于Pu(Ⅴ)的还原。  相似文献   

3.
用微乳液法制备了表面经硬脂酸(ST)修饰的4种不同价态的钴氧化合物纳米微粒。初步摸索了合成的最佳条件,利用XRD,TEM,IR等测试手段对制备的钴纳米催化剂的物相、粒子的形貌和粒度及钴氧化物纳米微粒与表面活性剂有机基团间的结合方式进行了表征,结果表明制得的纳米微粒呈球状、粒度随热处理温度升高而增大,COO-与Co(Ⅱ,Ⅲ)离子间以化学键相结合。利用流动法固定床反应器研究了钴氧化物纳米催化剂对N2O的催化分解活性,实验结果表明,在350℃焙烧制得的Co2O3纳米粒子对N2O的催化分解有较好的催化活性。  相似文献   

4.
以Pt-Ti(镀铂钛)为阳极,Ti为阴极,对HNO3介质中的H2C2O4进行恒电流电解,考察HNO3介质中H2C2O4电解动力学特性及其影响因素,并初步探讨HNO3介质中H2C2O4的电解氧化机理。研究结果表明:电流密度控制在25~37mA/cm2、HNO3浓度为2~3mol/L、温度为30~40℃时,电解效果最佳;微量金属离子(Fe3+、MnO-4、Ag+)的存在对H2C2O4的电解起催化作用,能较大提高电解速率;电解氧化法破坏H2C2O4的效率高于KMnO4蒸煮法,在工业中有潜在的应用前景。  相似文献   

5.
为优化硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)的工艺条件,确定此反应过程的控制步骤,有针对性地提高控制步骤的反应速率,以确定N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的反应历程以及反应机理,通过实验研究确定了N2H4在Pt催化剂上的断键方式和分解机理。采用气相色谱法、分光光度法、滴定法及排水法对硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的产物进行分析,确定反应过程中N2H4的断键机制。结果表明,硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)反应过程中没有叠氮酸、氮氧化物及氢气生成,产物主要是N2,生成的N2的量与消耗的N2H4的量接近1∶1;当存在U(Ⅵ)时,生成的NH+4产量较低,当U(Ⅵ)反应完全后,NH+4的产生速率急剧增大;N2H4以N-N断键和N-H断键两种方式共存;反应温度升高有利于加快由U(Ⅵ)制备U(Ⅳ)还原反应的进行。  相似文献   

6.
利用H_2O_2对活性炭进行活化,得到了良好的吸附材料(15%-AC),用傅立叶红外(Fourier Transform Infrared spectroscopy,FT-IR)、热重分析(Themiogravimetric Analysis,TGA)、扫描电子显微镜(Scanning Electron Microscope,SEM)和Brunauer-Emmett-Teller (BET)孔径分析等方法测定了活化前后样品。结果表明:经过H_2O_2活化后的活性炭,表面氧化基团增加,形成更多吸附位点,比表面积小幅度减少,但介孔量增加,孔隙率上升。采用静态吸附实验研究了接触时间、pH、固液比、初始浓度、温度、共存阴阳离子等因素对吸附的影响。在最佳条件下(接触时间、pH、固液比、初始浓度、温度分别为90 min、5、8 g·L~(-1)、80 mg·L~(-1)、35℃),吸附性能增加了68%;准二级动力学模型和Langmuir等温吸附模型对吸附行为的拟合效果好,表现为表面均匀且为多基元的吸附行为;15%-AC在共存离子和循环吸附的影响下仍具有良好的吸附性能。实验证明:H_2O_2的活化过程可以有效地提高活性炭对U(Ⅵ)的吸附性能。  相似文献   

7.
利用H2O2对蒙脱石进行活化,获得了活化蒙脱石吸附材料(AX-MMT),采用X射线衍射(XRD)、傅里叶红外谱图(FTIR)、透射电镜(TEM)、扫描电镜(SEM)、比表面分析(BET)、表面Zeta电位分析等手段对活化样品进行了表征;采用静态批量实验法,考察了H2O2浓度、pH值、接触时间和共存阴阳离子对U(Ⅵ)在AX-MMT上吸附率的影响。结果表明:活化保留了蒙脱石基础结构,其阳离子交换容量(CEC)有所减少,但层间距、比表面积、孔隙体积、表面酸位点和表面Zeta电位均有明显提升,对溶液中U(Ⅵ)的吸附性能显著增强;在最佳活性和吸附条件下(H2O2质量分数、pH值和接触时间分别为10%、6和24 h),蒙脱石对U(Ⅵ)的吸附性能提升了8.5倍,吸附行为符合准二级吸附动力学模型;在共存阴阳离子的干扰下,H2O2活化蒙脱石能对U(Ⅵ)展现良好的吸附性能。  相似文献   

8.
采用电子自旋共振谱(ESR)法,研究了酸性条件下•NH2的转化,HClO4体系下反应时间对溶液中自由基产生的影响、pH值对N2H4断键的影响以及HNO3中N是否对溶液中的•NH2有贡献,确定了Pt催化N2H4分解的反应机理。结果表明:在酸性条件下•NH2被DMPO捕捉时反应式为•NH+3+HO-H+DMPO=NH+4+DMPO(•OH),硝酸在Pt催化N2H4体系中不会发生断键产生•NH2,所产生的•NH2是由N2H4断键形成的;在HClO4体系中,随着Pt催化N2H4反应时间的延长,N2H4中N-N断键的趋势逐渐减小,N-H断键的趋势逐渐增大;随pH值的增大,N2H4中N-N断键的速率先快速减小,pH>3后缓慢增大;Pt催化N2H4分解反应中N-N断键和N-H断键两种方式共存,但N-N断键占优;反应体系中N2H4与H浓度之比决定了N-N断键生成•NH2的速率,而•NH2与H的浓度又决定了•NH2转化成产物的速率,这两方面共同决定了N2H4分解的速率。  相似文献   

9.
采用铂催化法分解H2O2。结果表明,铂催化法能在50℃以下分解破坏H2O2,催化速度与铂催化表面积成正比,同时不造成钚价态的变化,可通过温度控制其分解速度,与加热分解法相比,具有破坏速度平稳且钚价态不变等优点。  相似文献   

10.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为代表的酰胺荚醚类萃取剂可以有效萃取高放废液中的An(Ⅲ)和Ln(Ⅲ),为防止Zr4+、Pd2+等裂片元素萃入有机相,通常需要加入H2C2O4作为水相络合剂,目前,H2C2O4对TODGA萃取Ln(Ⅲ)的影响尚未报道。本工作研究了HNO3、H2C2O4浓度对TODGA或TODGA+TBP体系萃取Nd3+的影响,同时测定了有机相中的H2C2O4浓度,并用紫外-可见吸收光谱分析了有机相中的H2C2O4与有机相中Nd3+的配位情况。研究结果表明:HNO3浓度在1.0~3.0 mol/L的范围内,Nd3+的分配比D(Nd3+)随HNO3浓度的增加而增加;H2C2O4浓度在0.1~0.5 mol/L的范围内,D(Nd3+)随H2C2O4浓度的增加而增加。HNO3浓度在1.0~3.0 mol/L的范围内,萃入有机相中H2C2O4浓度随HNO3浓度的增加而减小,且存在于有机相中的H2C2O4并未与有机相Nd3+配位。  相似文献   

11.
在6-311G(d)水平下,采用微扰理论的MP2方法,研究了LiD与H2O的反应。结果表明,反应存在两个通道:LiD+H2O→LiOH+HD(R1);LiD+H2O→LiOD+H2(R2)。298K下,两通道的势垒高度分别为9.31和195.08kJ/mol,反应速率常数分别为1.88×1010和3.74×10-26(mol•dm-3)-1•s-1。  相似文献   

12.
氢—水液相催化交换法脱氚   总被引:3,自引:0,他引:3  
对疏水催化剂的设计与制备方法及氢-水液相交换反应过程进行了讨论,并概要评述了以常温氢-水催化交换法进行重水脱氚的液相催化交换(LPCE)及其联合电解的催化交换(CECE)工艺流程。  相似文献   

13.
In this paper,some experimental equipment has been set up for kHz frequency AC liquid phase discharge,and the temperature of the deionized water was regulated during discharge.The electrical characteristics and spectra of liquid phase H2O discharge have been investigated.Two discharge modes,high temperature and low temperature,were both found.The results show that there are two mechanisms in liquid phase discharge:the field ionization mechanism and the breakdown mechanism of bubbles,and these two mechanisms are always developed simultaneously;the temperature is the key factor determining the discharge type.At high temperature,the breakdown of bubbles is the main discharge mechanism,and the field ionization mechanism occurs mainly at low temperature.  相似文献   

14.
采用本实验室制备的Pt-SDB(聚乙烯-二乙烯苯)疏水催化剂,研究了在管式反应器中氢气和氧气的化合反应。考察了冷却方式、惰性填料、温度、空速和催化剂用量等因素对常温催化氢氧化合过程的影响,并进行了宏观动力学研究,测定了表观活化能。实验结果表明:疏水催化剂Pt-SDB在常温下高效催化氢氧化合反应,而且具有良好的疏水性。建立了反应物氢气的连续性方程。  相似文献   

15.
HNO3洗涤法去除TRPO相中的H2C2O4   总被引:1,自引:0,他引:1  
研究了HNO3洗涤法去除TRPO相中H2C2O4的条件。结果表明,用5.5mol/L HNO32级洗涤TRPO流程中H2C2O4反萃Np、Pu段的TRPO相,可以完全去除H2C2O4,TRPO相不再出现混浊。再用(NH4)2CO3溶液从TRPO相中反萃U(Ⅵ),水相不再产生白色沉淀。确保TRPO提取锕系元素的萃取流程正常进行。  相似文献   

16.
研究了30%TBP-煤油在不同的硝酸-草酸混合溶液中对Np,Pu各价态的萃取分配,在HNO  相似文献   

17.
《等离子体科学和技术》2015,17(12):1043-1047
A great deal of attention has been focused on discharge plasma as it can rapidly decompose N_2O without additives,which is not only a kind of greenhouse gas but also a kind of damages to the ozone layer.The thermal equilibrium plasma is chosen to combine with catalysts to decompose N_2O,and its characteristics are analyzed in the present paper.The results indicate that NO and NO_2 were formed besides N_2 and O_2 during N_2O decomposition when N_2O was treated merely by discharge plasma.Concentration of NO declined greatly when the discharge plasma was combined with catalysts.Results of Raman spectra analysis on CeO_2,Ce_(0.75)Zr_(0.25)O_2and Ce_(0.5)Zr_(0.5)O_2 imply that the products selectivity has been obviously improved in discharge plasma decomposing N_2O because of the existence of massive oxygen vacancies over the composite oxide catalysts.  相似文献   

18.
计算模拟应用于氢同位素分离领域,能够方便、快捷地进行工艺条件分析。本工作采用数值模拟的方法对比研究了水-氢催化交换过程中HD/H_2O、DT/D2O和HT/H_2O三种氢同位素体系的分离性能。研究表明:在一定工艺条件下,三种体系均在操作温度为343K时达到最大的分离效果;随着气液比从1.0增大到3.0,最优操作温度均从343K降低到323K,但是在此过程中,HT/H_2O体系的分离效果受温度的影响较小一些;在达到最大分离效果的目标下,HT/H_2O体系需要的理论塔板数比HD/H_2O和DT/D2O体系少,同时,在优化的工艺条件下,三体系气相中氢同位素浓度在交换柱内分布曲线存在一定的差异。  相似文献   

19.
建立了傅立叶变换红外吸收光谱测定高、中、低浓度D2O的方法。该法具有快速、简便、样品无需处理即可直接测定的优点。方法精密度高,D2O浓度(摩尔分数)为99.84%时,标准偏差优于0.001;测量范围宽,D2O浓度检测范围为99.92%~0.015%;样品用量少,0.2mL样品即可获得准确结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号