首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(acrylonitrile-butadiene-styrene) (ABS)/polycarbonate (PC) blends reinforced with potassium titanate (K2Ti6O13) whiskers were prepared in a twin screw extruder followed by injection molding. The whiskers were pretreated with tetrabutyl orthotitanate prior to compounding. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the modulus of ABS/PC/K2Ti6O13 blend increased markedly with increasing whisker content. However, the variation of the modulus of ABS/PC/K2Ti6O13 blend with PC content followed a sigmoidal relation. In addition, the tensile strength of the blends containing 20 wt% PC tended to increase markedly with increasing whisker content. But the impact strength of the blends containing 20 wt% PC decreased rapidly with increasing whisker content. Dynamic mechanical analyses (DMA) results indicated that the storage modulus of the blends increased markedly with increasing K2Ti6O13 whisker content. Differential thermal analysis and thermogravimetric measurements showed that potassium titanate whiskers tend to induce chemical decomposition of PC during blending of the PC/whisker blends. However, the incorporation of ABS into PC was beneficial to reduce the PC decomposition during compounding with the whiskers.  相似文献   

2.
Potassium titanate (K2Ti6O13) whisker treated with tetrabutyl orthotitanate was used to improve the mechanical and thermal properties of the poly(acrylonitrile–butadiene–styrene) (ABS) copolymer. The composites were prepared in a twin‐screw extruder followed by injection molding. Static tensile measurements showed that both the modulus and breaking stress of ABS/K2Ti6O13 composites increase considerably with increasing whisker content; the strain at break of ABS was almost unaffected by the incorporation of a whisker content up to 15 wt %. Izod impact tests indicated that the composites showed a decrease in the impact strength with increasing whiskers content. Thermogravimetric analysis showed that the K2Ti6O13 whisker additions have little effect on the thermooxidative stability of ABS. Scanning electron microscopic observations revealed that the whiskers were aligned along the melt‐flow direction in the thin surface layer, whereas the whiskers were oriented randomly as well as perpendicular to the injection direction in the thick core region of the composites. The Tsai–Halpin equation was used to evaluate the moduli of the ABS/K2Ti6O13 composites. The theoretical calculations generally correlated well with the experiment data by assuming K2Ti6O13 whiskers to have an aspect ratio of 12. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2985–2991, 1999  相似文献   

3.
Polycarbonate (PC) composites reinforced with potassium titanate (K2Ti6O13) whiskers were blended in a twin‐screw extruder followed by injection molding. The surface of whiskers was treated with tetrabutyl orthotitanate prior to blending. The effects of potassium titanate whisker additions on the tensile, impact, and thermal properties of PC were investigated. Tensile tests showed that the stiffness of composites markedly improved with increasing whisker content. However, potassium titanate whiskers were ineffective to reinforce PC because these whiskers promoted chemical decomposition of PC matrix during compounding. Consequently, the torque values of PC/K2Ti6O13 composites were much lower than that of PC. Moreover, torque measurements revealed that titanate coupling agent also facilitated decomposition of PC during blending. The mechanisms responsible for the degradation of PC matrix of the surface‐treated PC/K2Ti6O13 composites are discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 501–508, 1999  相似文献   

4.
Fine particles of barium hexaferrite were prepared from aqueous solutions of iron nitrate, barium nitrate and potassium hydroxide by utilizing a continuous flow type supercritical water crystallization method. The influence of stoichiometry (Fe/Ba mole ratio) and alkalinity (R) on the product composition and morphology was studied under fixed temperature, pressure and residence time. Experiments were performed with varying Fe/Ba mole ratios and alkali mole ratio (R). Within mole ratio ranges of 0.5< Fe/Ba< 5, BaO-6Fe2O3 single phase was produced; and as the Fe/Ba mole ratio increased, α-Fe2O3 was also formed and its quantity increased with increasing mole ratio. At an Fe/Ba ratio of 12, stoichiometric mole ratio of BaO-6Fe2O3, the only product formed was α-Fe2O3 fine particles. In the case of the influence of alkalinity, single phase α-Fe2O3 was detected at R of 0.5 and if R exceeded 2, a single phase BaO-6Fe2O3 was detected. According to the results of the experiment and the study of reaction mechanisms, the formation of BaO-6Fe2O3 proceeds via a non-stoichiometric reaction and the product composition and morphology can be controlled by adjusting the reaction parameters to obtain optimum conditions for Ba(OH)2 precipitate formation.  相似文献   

5.
K2Ti6O13 whisker was modified with n‐octadecyltrichlorosilane (OTS), fluorosurfactant (FSK), and silane coupling agent (KH‐550), respectively. The surface energy of K2Ti6O13 whisker was calculated based on Van Oss‐Chaudhury‐Good function. Then the influence of surface modification on the tribological and mechanical properties of K2Ti6O13 whisker filled polytetrafluoroethylene (PTFE) composites was studied. Surface energy calculation shows that the surface energy of OTS‐treated K2Ti6O13 whisker is only 29.0 mJ/m2, which is the closest to the value of pure PTFE. Among all samples, the PTFE composite filled with OTS‐treated K2Ti6O13 whisker shows the best antiwear property, tensile strength, and impact strength, which is about 19 to 33%, 15 and 55% higher than that of untreated K2Ti6O13 whisker filled PTFE, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A protonated form of the n?=?4 layered bismuth containing perovskite-like titanate K2.5Bi2.5Ti4O13 belonging to Ruddlesden-Popper phases was prepared via ion exchange reaction of interlayer K+ with protons. Its composition was investigated by TG ICP and EDX analysis was found to be H2K0.5Bi2.5Ti4O13·H2O. The thermal behavior of the obtained phase was investigated by STA coupled with mass-spectrometry, the structural changes, happening with the sample during heating, were examined by XRD. It was shown that the as-prepared hydrated phase undergoes two-stage dehydration at low temperatures (up to 160?°C). The further heating leads to the gradual decomposition and crystallization of new phases, notably Bi2Ti2O7, Bi4Ti3O12 and Bi2Ti4O11. The morphology of the as-prepared sample and samples after heat treatment was examined using SEM.  相似文献   

7.
The interaction between titanium and Ti4+ ions (K2TiF6), the electroreduction reaction of Ti4+ ions and the anodic reaction of Ti in KCl–NaCl–KF melts with K2TiF6 at 973 K were studied by means of electrochemical and physical measurements. It was found that the fluoride ions played a very important role in these reactionsIn KCl–NaCl-3 wt % K2TiF6 molten salts with less than 3 wt % KF, the interaction reaction was considered to proceed as Ti4++Ti=2Ti2+. If the bath contained more than 10 wt% KF, the reaction 3Ti4++Ti=4Ti3+ occurred.The electrochemical reduction of Ti4+ (K2TiF6) ions in the molten salts with less fluoride ions was observed to proceed according to three reaction steps, i.e. Ti4++e=Ti3+, Ti3++e=Ti2+, Ti2++2e=Ti. In the case of the fluoride ion concentration being higher, two reduction steps, i.e. Ti4++e=Ti3+, Ti3++3e=Ti were suggested.  相似文献   

8.
Nanosized Na2Ti3O7, K2Ti6O13 and Cs2Ti6O13 materials were prepared and used as supports of ruthenium nanoparticles for catalytic ammonia decomposition. It is shown that these catalysts exhibit higher catalytic activity than ruthenium supported on TiO2 nanoparticles promoted with cesium. The difference is attributed to the use of nanostructured materials with incorporated alkali metals in the crystal lattice, which apparently gives a higher effect of the promoter. All samples were characterized by X-ray powder diffraction, transmission electron microscopy and N2 physisorption measurements. Furthermore, the effect of ruthenium loading on the catalytic decomposition of ammonia was investigated.  相似文献   

9.
《Ceramics International》2020,46(1):576-583
Ti3SiC2 has the unique properties integrating the advantages of metals and ceramics, and good open pore structure when alloyed with Al. In this work, porous Ti3SiC2 compounds with different Al/Si atom ratios were prepared through the reactive synthesis of elemental powders at 1300 °C. The results indicate that the phase compositions are determined by Al element mole number, and that the pore structure can be controlled through varying Ti particle size. The MAX phase transits from Ti3SiC2 with Al element mole number no more than 0.6 to Ti3AlC2 with Al element mole number in the range of 0.8–1.2. When Al element mole number is 0.6, the porous compound has a single MAX phase of Ti3SiC2 with uniform microporous structure and high bending strength. Porous Ti3SiC2 alloyed with 0.6Al has a slow linear increase rate of 0.0083%/μm in open porosity with increasing Ti particle size, and a strict linear relationship between the maximum aperture and Ti particle size with the increase rate of 0.0342 μm/μm. The pore structure formed by the phase transition mechanism for porous MAX phase has the smallest tortuosity factor compared with that formed by the clearance mechanism and the Kirkendall effect.  相似文献   

10.
The high-temperature behaviour of K0.5Bi0.5TiO3, prepared using a conventional solid-state reaction method, was investigated using X-ray powder diffraction, scanning electron microscopy, wavelength-dispersive X-ray spectroscopy and Knudsen effusion combined with mass spectrometry. The results revealed the formation of an off-stoichiometric matrix phase with an excess of bismuth and a deficit of potassium compared to the stoichiometric K0.5Bi0.5TiO3 during the solid-state reaction. During the thermal treatment potassium and bismuth vapours were detected over the solid sample and related to the thermal decomposition of the matrix phase. The losses of the potassium and bismuth components shifted the nominal composition to a three-phase region, and as a result, K2Ti6O13 and a new Bi-rich ternary phase were formed in the system, the latter being formed after prolonged sintering. Differential thermal analyses and heating-microscope analyses showed a narrow sintering-temperature range limited by the melting of the sample above 1040 °C.  相似文献   

11.
A new smooth potassium dititanate film was prepared by sol-gel method and characterized by thermogravimetry (TG) and differential scanning calorimetry (DSC), X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Visible diffuse reflectance and Raman spectroscopy. The gaseous photocatalytic activity of smooth K2Ti2O5 films was studied using contact angle analysis from the photocatalytic decomposition of octadecyltrichlorosilane (OTS) based self-assembled monolayers (SAMs) formed on K2Ti2O5 films. The photocurrent response of the film was determined by an electrochemical method. It was shown that the films were smooth, compact, and transparent when formed on glass. Compared with TiO2 film, the K2Ti2O5 film showed wide absorption in the ultraviolet and visible region. It was found that the monolayers on K2Ti2O5 decomposed much faster than those on TiO2 under UV irradiation of 254 nm in air. The film also exhibited a stronger photoresponse and a more stable anodic photocurrent. The K2Ti2O5 film efficiently decomposes the alkylsiloxane monolayers under UVirradiation in air and it was found to be a good photocatalyst for gaseous organic pollutant treatment. __________ Translated from Journal of functional materials, 2007, 38(7): 1067–1070, 1073 [译自: 功能材料]  相似文献   

12.
In this study, Na0.5Bi0.5TiO3-xSrTiO3 (NBT-xST, x?=?0, 0.10, 0.26) whiskers were synthesized by a two step molten salt method using Na2Ti6O13 whiskers as templates. The crystalline phase, morphology, microstructure, composition and ferroelectric characteristic of the whiskers were investigated in details. The topochemical transformation from Na2Ti6O13 structure to NBT-xST perovskite structure was found to occur by structural rearrangement of the edge sharing octahedra into vertex sharing octahedra. The prepared polycrystalline NBT-xST whiskers possessed high aspect ratio with diameter of 500–800?nm and length of 5–10?µm. The PFM investigations confirmed the favorable piezoelectricity of NBT whiskers while the NBT-0.26ST whiskers displayed relaxor-ferroelectric characteristics at room temperature, exhibiting the potential of NBT-xST whiskers for fabricating high performance micro/nano-devices.  相似文献   

13.
In this paper, the structure and dielectric properties of BaO–TiO2 system ceramics were studied. By adding ZnO and Nb2O5 as sintering agents to the raw materials, the BaO–TiO2 system ceramics were sintered at a temperature of 1260 °C for 2 h and have superior dielectric properties at 1 GHz: quality factor Q=12,500, relative dielectric constant εr≈37, temperature coefficient of dielectric constant αε=0±30 ppm/°C. XRD pattern shows that the main crystal phase of the ceramics is Ba2Ti9O20, accompanied by a small number of additional phases: BaTi4O9, Ba4Ti13Zn7O34, Ba4Ti13O30 and Ti2Nb10O29, etc. The initial Ba/Ti ratio has a great effect on the dielectric properties of the ceramics, which can be explained by the variance in the formation of phases due to different Ba/Ti ratios.  相似文献   

14.
Composite Ni—P + TiO2 + Ti layers were prepared by codeposition of Ni—P alloy with TiO2 and Ti powders from a solution containing suspension of TiO2 and Ti particles. The electrodeposition was carried out under galvanostatic conditions at room temperature. The layers exhibited an amorphous Ni—P matrix in which crystalline TiO2 and Ti were embedded. On the deposit surface, the nonstoichiometric Ti oxide, Ti10O19, and intermetallic compounds, NiTi, formed during the electrodeposition, were also present. The heat treatment of these layers in argon leads to the crystallization of Ni—P matrix and formation of nonstoichiometric Ti oxides, detected by XRD. Electrolytic activity towards the hydrogen evolution reaction (HER) was studied on these electrode materials before and after heat treatment. The mechanism of the HER was also studied, and the kinetic parameters were determined using steady-state polarization and electrochemical impedance spectroscopy (EIS). An increase in activity occurring after heating of Ni—P + TiO2 + Ti layers is related to TiO2 reduction and formation of nonstoichiometric Ti oxides: Ti10O19(400 °C), Ti7O13(500 °C) and Ti4O7(800 °C). It is postulated that the increase in electrochemical activity is related to the properties of these oxides and a facility for H reduction/adsorption on their surface, as well as to the presence of NiTi intermetallics as compared with the Ni—P + TiO2 + Ti electrode.  相似文献   

15.
《Ceramics International》2023,49(16):26616-26624
In this study, nanostructured non-stoichiometric TiO2-x compacts were prepared by the in-situ reduction of rutile titanium oxide (TiO2) powder with urea powder via spark plasma sintering (SPS). The crystal structure and particle size of the prepared compacts were examined. The XRD patterns revealed that TiO2 could be reduced easily by the urea powder to obtain non-stoichiometric TiO2-x, and the compacts still possessed rutile crystal structures. The average particle sizes of the compacts were less than 250 nm, successfully obtaining the non-stoichiometric TiO2-x with uniform nanostructures at the sintering temperature of 1073 K. In addition, nanostructured TiO2-x compacts with Magnéli phase TinO2n-1 (n = 2, 4, 8) were fabricated by varying the volume fraction of Ti powder in a urea environment via SPS. The results suggested that addition of Ti powder contributed to the formation of Magnéli phases TinO2n-1, and the value of n decreased with an increase in the volume fraction of the Ti powder. Furthermore, the thermoelectric properties of the compacts sintered with and without Ti powder were both investigated. The TiO2–U13.3-Ti10 compact displayed the highest power factor of 5.04 μWcm−1K−2 at 973 K. A lower thermal conductivity was achieved by TiO2–U13.3-Ti10 compact in the temperature range of 373–973 K, approximately 3 Wm−1K−1, due to the nanostructures and Magnéli phases. The highest ZT value of 0.146 was obtained for the TiO2–U13.3-Ti10 compact at 973 K, achieving a reasonable enhancement of thermoelectric properties.  相似文献   

16.
We prepared Bi6Fe2Ti3O18 thin films on Pt/Ti/SiO2/Si substrates with thickness ranging from ~300 to ~900 nm by using a chemical solution deposition route and investigated the thickness effects on the microstructure, dielectric, leakage, and ferroelectric properties of Bi6Fe2Ti3O18 thin films. Increasing thickness improves the surface morphology, dielectric, and leakage properties of Bi6Fe2Ti3O18 thin films and a well‐defined ferroelectric hysteresis loops can form for the thin films with the thickness above 400 nm. Moreover, the thickness dependence of saturation polarization is insignificant, whereas the remnant polarization decreases slightly with increasing thickness and it possesses a maximal value of ~20 μC/cm2 for the 500 nm‐thick thin films. The mechanisms of the thickness dependence of microstructure, dielectric, and ferroelectric properties are discussed in detail. The results will provide a guidance to optimize the ferroelectric properties in Bi6Fe2Ti3O18 thin films by chemical solution deposition, which is important to further explore single‐phase multiferroics in the n = 5 Aurivillius thin films.  相似文献   

17.
The reaction of trivacant precursor Na9[A–PW9O34]·19H2O with Ti(SO4)2 affords the novel dimeric, di-TiIV-substituted tungstophosphate K4Na6[α-1,2-PW10Ti2O39]2·14H2O. The X-ray structural determination shows the dimeric, anhydride structure was formed by two Ti–O–Ti bonds linking two di-titanium-substituted Keggin anion [α-1,2-PW10Ti2O40]. It was also characterized by elemental analysis, TGA, FT-IR and UV–vis spectroscopies.  相似文献   

18.
Photocatalytic activities for water decomposition were examined for photocatalysts using hexa- and octa-titanates and TiO2(B) with different tunnel space in the structure. Using RuO2 as promoter, M2Ti6O13 (M = Li, Na, K, Rb) showed the stoichiometric production of Hz and O2 except for Li, whereas H2Ti8O17 and TiO2(B) had very low activity producing only hydrogen as a product. The effects of promoters on Na2Ti6O13 showed that the activity increased in the order of RuO2 > RuO2 + IrO2 > IrO2 > RuO2 + Pt > MnO2. These effects along with other related ones are discussed: it emerges that the presence of the tunnels is important for the achievement of high photocatalytic activity.  相似文献   

19.
《Ceramics International》2019,45(10):12742-12756
The Ti excess La2Ti2 (1+x) O7 (x = 0, 0.005, 0.01, 0.02, 0.05, 0.1) piezoelectric ceramics have been prepared by sol-gel technology and solid state synthesis method. Through refinement analysis, the phase structure of the ceramics varies with Ti content. Most monoclinic phase (∼93%) and a handful of orthogonal phase (∼7%) coexist in La2Ti2 (1+0) O7 ceramics. Pure monoclinic phase La2Ti2O7 with space group P21 appears in La2Ti2 (1+0.005) O7 and La2Ti2 (1+0.01) O7 ceramics. Monoclinic phase La2Ti2 O7 and a certain proportion of tetragonal phase La0.67TiO2.87 coexist in La2Ti2 (1+0.02) O7, La2Ti2 (1+0.05) O7 and Ti2 (1+0.1) O7 ceramics. With the excess of Ti content, the monoclinic phase ratio and distortion angles in a-b projection plane of the ceramics increase first and then decrease, which is consistent with the variation tendency of piezoelectric constant d33. The excellent piezoelectric constant for Ti2 (1+0.01) O7 ceramics is 2.8 pC/N.Impedance analysis shows that the conductive mechanisms of all samples include both grain and grain boundary conductivity at temperature range T ≥ 500 °C. The formation of tetragonal phase La0.67TiO2.87 derives from Ti excess in pure monoclinic phase La2Ti2O7. The existence of tetragonal phase La0.67TiO2.87 can obviously increase the capacitance of ceramics at x ≥ 0.05. All prepared piezoelectric La2Ti2 (1+x) O7 ceramics have highly frequency stability and are candidates for ultrahigh temperature piezoelectric application.  相似文献   

20.
《Ceramics International》2016,42(11):13242-13247
Considering the contribution of the mixed valence structure of Ti3+ and Ti4+ to the semiconductivity of grain, compositions with the formula of Y2/3Cu3Ti4+xO12 were designed and prepared. The dielectric bulk responses of Y2/3Cu3Ti4+xO12 ceramics were explored in detail. Changing Ti stoichiometry gives rise to an increase of the intrinsic permittivity. Y2/3Cu3Ti3.925O12 ceramic exhibits a higher intrinsic permittivity of ~120 at 60 MHz than that of pure Y2/3Cu3Ti4O12 ceramics (87 at 60 MHz). Additionally, the activation energies of bulk responses are significantly enhanced by changing Ti stoichiometry, which is closely linked with the increase of Ti3+/Ti4+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号