首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents the results of investigating the catalytic activity of potassium titanate nanomaterials doped by different metals (Ni, Mg, Al, Fe, and Cr) in oxidation reactions of hydrogen and carbon monoxide. It is shown that the best characteristics of the oxidation of the investigated gases have nanotubes doped by aluminium (0.3 × 10–5 mol H2/(g s) at 250°C and 10–5mol CO/(g s) at 350°C).  相似文献   

2.
The influence of composition and temperature on the anode polarization and corrosion rate of pure Al and Al‐In anodic alloys in 8M NaON electrolyte has been investigated. High current density (more than 800 mA cm−2) and faradaic efficiency over 97% were observed for all investigated alloys at 60 °C. Lower temperature provides lower current density (200–300 mA cm−2 at 40 °C, and less than 100 mA cm−2 at 25 °C). Different formation of the product reaction layers was observed for pure aluminum and Al–0.41In alloy, leading to the different polarization character of the samples. The comparison of two Al‐In alloys with similar composition has been carried out. Al–0.45In alloy having a coarse‐grained structure had a more positive no‐current potential and lower value of anode limiting current (200 mA cm−2 vs. 300 mA cm−2) compared with the fine‐grained Al–0.41In alloy, as well as greater parasitic corrosion rate and greater no‐current corrosion. The current‐voltage, power and discharge characteristics of the aluminum‐air cell with Al–0.41In anode and gas diffusion cathode have been investigated. Open circuit voltage of the cell is 1.934 V and the maximum power density of the cell is 240 mW cm−2 at the voltage of 1.3 V.  相似文献   

3.
The surface of a model iron catalyst precursor was modified with titanium butoxide to introduce Fe–O–Ti interactions in a controlled manner and to investigate the role of these interactions in the catalyst. The reduction of the model catalyst precursors in hydrogen at 350 °C for 16 h leads to the formation of α-Fe and an iron–titanium mixed oxide, due to the incorporation of Ti into the iron oxide structure. The α-Fe phase is transformed into χ-Fe5C2 during the Fischer–Tropsch synthesis at 250 °C, whilst the Fe–Ti mixed oxide phase is preserved. A higher reaction temperature of 300 °C is required to transform some the oxide phase into a carbide phase under Fischer–Tropsch conditions. The intrinsic activity of the iron carbide phase in samples also containing the Fe–Ti mixed oxide phase is at a reaction temperature of 250 °C ca. 20 % more active than in the sample, which does not contain the mixed oxide.  相似文献   

4.
Microporous MgO-Mg(Al, Fe)2O4 refractory aggregates were prepared using magnesite, Al(OH)3 and Fe2O3 applying an in-situ decomposition synthesis method. At 1400–1600 °C, there was a Mg(Al, Fe)2O4 with Fe3+, which had two structures. One was a ring structure formed from Al(OH)3 pseudomorph particle as a template and a low content of Fe3+. The other was the dot and strip structures precipitated in magnesite pseudomorph particles with a high content of Fe3+. Besides, at 1550–1600 °C, microporous MgO-Mg(Al, Fe)2O4 refractory aggregates had an excellent compressive strength (75.8–81.5 MPa) and apparent porosity (26.8%?28.2%).  相似文献   

5.
《Ceramics International》2023,49(20):32989-33003
In this work, mullite/cordierite precursor powder was prepared through a technology of low-temperature synthesis by using the sol-gel process, tetraethyl orthosilicate (TEOS) as a source of silicon oxide SiO2, and aluminum nitrate nonahydrate Al (NO3)3.9H2O as a source of aluminum oxide (Al2O3) and magnesium nitrate hexahydrate Mg (NO3)2.6H2O as a source of magnesium oxide MgO was used as raw materials to synthesize mullite/cordierite precursor gel with a concentration (sample containing 50 wt% of cordierite and 50 wt% of mullite) and named as (MC50). The objective of this study is to find a suitable kinetic model to study the phases and the mechanisms of their formation in mixtures, with the prediction of the system's behavior under selected thermal conditions, including finding the kinetic and thermodynamic media that describe these interactions. To follow and characterize the crystalline phases and their transformation as a function of temperature utilizing differential thermal analysis (DTA), Dilatometry (DIL), and powder X-ray diffraction (XRD). The results show that the crystallization process occurred in the temperature interval between (900–1350) °C. In the temperature range of (900–1000) °C, spinels between Al–Si and Al–Mg with the chemical formulas (Al4Si3O12 and MgAl2O4) were formed. When the thermal treatment temperature increases from (1000–1100) °C, mullite is produced. As the temperature increases, the amount of Mg–Al spinel decreases to form amorphous silica, and μ-cordierite has appeared at 1250 °C. With an increase in temperature up to 1350 °C, α-cordierite appeared as a stable phase. The reason for this is the presence of the spinel (Al–Mg) phase that helped it form.To determine the reaction kinetics of these transformations at high temperatures, the mixture 50/50 mullite/cordierite was selected to study its kinetics. The activation energy values (Ea/Tm) (Tm is the maximum temperature of the transformation, i.e., the maximum peak temperature is not related to the crystallization fraction α) calculated by Ozawa, Boswell, and Kissinger methods are in good agreement with the evident activation energy (Eα/Tα) (Tα is the degree of the heat of transformation in terms of crystallization fraction α changes from 0<α < 1) calculated using the KAS and FWO methods.For the purpose of calculating the interaction model and finding the media that determine the interaction model based on the experimental data, Malék's methodology method was used. The best kinetic model is the Šesták - Berggren model to describe the reaction process to form spinel, mullite, and α-cordierite. From the SB model, the equations Kinetics and all kinetic parameters (n, m, ln(k0)) that describe the kinetics of the reactions and mechanisms of formation of spinel, mullite, and α-cordierite in the mixture are, respectively, (2.14, 0.023, 65.21), (1.62, 0.1232, 81.76), and (1.41, 0.2859, 91.13). While the values of Gibbs free energy ΔG#, enthalpy ΔH#, and entropy ΔS# were as follows: 407.254 kJ mol−1, 976.756 kJ mol−1 and 415.561 J mol−1K−1 for Mullite formation, and 471.64 kJ mol−1, 1255.16 kJ.mol-1 and 491.75 J mol−1K−1 for the formation of α-cordierite.Comparison of simulation curves with experimental data obtained at different temperatures gives good agreement with the thermal analysis data (Experimental), which indicates that the Model of Šestak − Berggren, is the best suitable kinetic model for studying and describing the reaction technique for MC50 prepared by the sol-gel method.  相似文献   

6.
《Ceramics International》2021,47(23):32545-32553
Wetting and interfacial behavior of molten Al-(10, 20, 30, 40) at.%Ti alloys on C-terminated 4H–SiC at 1500 and 1550 °C were investigated experimentally, and theoretical bonding strength, structure stability and electronic structure of interfacial reaction products/C-terminated 4H–SiC interfaces were evaluated by first-principle calculations. The wetting experiments show that the Al–Ti/SiC systems present excellent wettability with contact angle of less than 15° except the Al–40Ti/SiC system performed at 1500 °C × 30 min. The SEM-EDS and TEM analyses demonstrate that the reaction products are mainly composed of Al4C3, TiC, Ti3SiC2, Ti5Si3CX and τ phase, and their formation and evolution can be mainly affected by the Ti concentration in the Al–Ti alloys and wetting temperature. Moreover, the calculated results show that the SiC/C-terminated TiC interface presents the highest work of separation and its electronic property reveals that the localization of electrons and formation of covalent bond between interfacial C atoms lead to the excellent bonding strength of SiC/TiC interface.  相似文献   

7.
Although Cf/ZrB2–SiC composites prepared via direct ink writing combined with low-temperature hot-pressing were shown to exhibit high relative density, high preparation efficiency, and excellent flexural strength and fracture toughness in our previous work, their oxidation and ablation resistance at high and ultrahigh temperatures had not been investigated. In this work, the oxidation and ablation resistance of Cf/ZrB2–SiC composites were evaluated via static oxidation at high temperature (1500°C) and oxyacetylene ablation at ultrahigh temperatures (2080 and 2270°C), respectively. The thickness of the oxide layer of the Cf/ZrB2–SiC composites is <40 μm after oxidizing at 1500°C for 1 h. The Cf/ZrB2–SiC composites exhibit non-ablative properties after oxyacetylene ablation at 2080 and 2270°C for >600 s, with mass ablation rates of 3.77 × 10−3 and 5.53 × 10−3 mg/(cm2 s), and linear ablation rates of −4.5 × 10−4 and −5.8 × 10−4 mm/s, respectively. Upon an increase in the ablation temperature from 2080 to 2270°C, the thickness of the total oxide layer increases from 360 to 570 μm, and the carbon fibers remain intact in the unaffected region. Moreover, the oxidation and ablation process of Cf/ZrB2–SiC at various temperatures was analyzed and discussed.  相似文献   

8.
The kinetics of ethylene polymerization with TiCl4/MgCl2/SiO2 has been investigated in the range of temperatures between 40 and 90°C and in the range of ethylene pressures between 4 and 12.4 kg/cm2. The role of MgCl2 was discussed from the dependence of the Mg/Ti ratio on the catalytic activity. The polymerzation rate was first order with respect to the monomer concentration and the dependence of the polymerization rate on the concentration of Al(C2H5)3 could be described by the Langmuir–Hinshelwood mechanism. The dependence of initial rate and the time to reach the maximum polymerization rate on the concentration of Al(C2H5)3 was also discussed. Polymerization rates as a function of the polymerization temperature showed a maximum and the activation energy was 11.8 kcal/mol between 50 and 80°C. The polymerization rate decreased with the increase of hydrogen partial pressure. The active site concentration (C*) was 1.9 × 10?2 mol/mol Ti by the inhibition method with carbon monoxide.  相似文献   

9.
An excellent anticorrosion Mg–Al layered double hydroxide (LDH) composite coating was successfully fabricated on LA43M magnesium alloy substrates via an in situ steam coating (SC) process and a subsequent hydrothermal treatment at different temperatures. The microstructure, composition and phase formation of the composite coatings were studied via X-ray diffractometer, energy disperse spectroscopy, and scanning electron microscope, respectively. The corrosion resistance of composite coatings was further investigated using electrochemical measurements and corrosion test. The results showed that LDH/SC composite coating has typical nanosheets microstructure, which effectively seal the defects of SC. As the hydrothermal temperature increases, the thickness and density of nanosheets increases, and the corrosion resistance was significantly improved. Especially, the Mg–Al LDH/SC composite coating prepared at 100°C was the most dense and thickness, and exhibited the optimal and long-term anticorrosion resistance in 3.5 wt.% NaCl soultion. It has the lowest Icorr (1.767 × 10−8 A/cm2), which decreased by three and two orders of magnitude compared with the bare substrate and SC. Furthermore, it can maintain good chemical stability after immersion in the corrosion medium for 192 h and its hydrogen evolution rate (0.00416 mL·cm−2·h−1) and weight lost rate (0.00266 mg·cm−2·h−1) were the lowest compared with other samples.  相似文献   

10.
L Petkov  Ph Radenkov  R Kyrtcheva 《Polymer》1978,19(5):570-573
A study has been made of ethylene polymerization in pseudo-solution with a catalyst system TiCl4/Al(C2H5)2Cl/Mg(C6H5)2 in the presence of hydrogen as a regulator of polyethylene molecular weight. The polymerization process in pseudo-solution by adjustment of hydrogen makes it possible to produce polyethylene having a wide range of molecular weights. For this purpose melt indices between 0°–50°C/min are desirable and these values are not reached with a suspension type of ethylene polymerization with a catalyst system TiCl4/Al(C2H5)2Cl/Mg(C6H5)2. The effect of the molar ratio cocatalyst/catalyst (Al/Ti and Mg/Ti) on the catalyst activity and on the polyethylene molecular weight was studied, together with the content of hydrogen as a regulator of the molecular weight. The catalyst productivity increased to some limiting molar ratio Mg/Ti and Al/Ti and further increase of organometallics in the catalyst system did not influence the polymer molecular weight. In the case of ethylene polymerization with this catalyst combination in the presence of hydrogen, some activation of the catalyst was observed. Two mechanisms, which may account for the activation effect of the hydrogen are discussed.  相似文献   

11.
The continuous titanium-doped ZrO2 mesoporous fibers with a large surface area (190 m2 g?1, TZ50-400) have been prepared by the sol–gel method coupled with the chemical template route. In the formation process, the self-induced acid environment of ZrOCl2·8H2O in ethanol solution was utilized to avoid a rapid hydrolysis process and the viscous sol precursors were successfully obtained for spinning fibers. X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra were used to study the chemical environment of surface Ti(IV) and Zr((IV)) ions. The findings disclose that the partial Ti atoms (less than 30 %) enter into the ZrO2 lattice and occupy the positions of Zr atoms, while the excess Ti atoms construct the linear Ti–O–Ti chains inside the extra framework, being favorable to prevent the collapse of meso structure.  相似文献   

12.
Using Al2O3 and TiO2 as raw materials, adding MgO as heat stabilizer and mullite as enhancer, aluminum titanate-mullite multiphase ceramics were successfully prepared by solid phase synthesis. The effects of MgO and mullite were systematically studied on the phase composition, microstructure, thermal stability, sintering properties, and mechanical properties of aluminum titanate ceramics. The results showed that the introduction of Mg2+ can partially replace Al3+ to form MgxAl2(1-x)Ti(1+x)O5 solid solution, improved the thermal stability of aluminum titanate ceramics, and promoted the formation and growth of grains, which reduced the sintering temperature. The crack deflections caused by mullite particles improved the mechanical properties. The filling effect of mullite particles and the formation of silica in mullite raw materials were conducive to ceramic densification. The statistics of Mg4M10 sample were as follows: the porosity was only 2.9%, the flexural strength was as high as 64.15 MPa, and the thermal expansion coefficient was 1.35 × 10−6 K−1 (RT-700°C), encouraging the application of ceramics with high thermal mechanical properties.  相似文献   

13.
《Ceramics International》2021,47(23):33242-33251
Novel Ni-doped Al2TiO5 emerald green ceramic pigments were successfully synthesized for the first time. Several characterization techniques (XRD, XPS, SEM, TEM, UV–Vis, and automatic colorimeters) were used to determine the phase composition and stability of the pigments, as well as the valence state of the doped nickel ion. The results show that nickel ion replaces the Al3+ in the aluminum titanate lattice in the form of Ni2+, which reduces the distortion of the octahedral structure. Ni-doping of the aluminum titanate lattice produces an excellent coloring effect and significantly promotes the synthesis and stabilization of aluminum titanate. The novel pigments have excellent color stability while maintaining exceptional coloring performance and thermal stability in a base glaze synthesized at 1200 °C. These pigments show considerable potential for high-temperature applications.  相似文献   

14.
This study systematically investigated the structural, dielectric, and ferroelectric properties of BaAl(2−2x)(Mg0.5Ti0.5)2xO4 ceramics in the 0 ≤ x ≤ 0.04 range. Single-phase solid solutions in the P63 space group with hexagonal crystal symmetry were confirmed in the composition range of 0 ≤ x ≤ 0.03. The bond lengths of Al1/(Mg,Ti)–O, Al2/(Mg,Ti)–O, and Al3/(Mg,Ti)–O increased with the increase in x, as confirmed through the Rietveld refinement and evolutions of corresponding modes in Raman spectra. The temperature stability of dielectric properties improved at a composition around x = 0.03, and the dielectric constant εr ascended with the increase in x. Ultrabroad temperature stability (−100°C to 700°C) was obtained, and an optimal combination (εr = 18.5, tan δ < 10−3, −22 ppm/°C ≤ TCC ≤ +20 ppm/°C, resistivity ~4.5 × 1014 Ω·cm) was achieved for the x = 0.03 ceramic sintered at 1260°C in air for 6 hours. The increase in stability was ascribed to the variations in axial bonds, and lattice distortions were determined through high-resolution transmission electron microscopy. The x = 0.03 ceramic could be a promising candidate for C0G or NP0 multilayer ceramic capacitors because of its low loss, high reliability, superior insulating properties and comparatively low-cost raw materials.  相似文献   

15.
The Mg–O–F system (MgF2–MgO) with different contents of MgF2 (100–0%) and MgO is tested as support of iridium catalysts in the hydrogenation of toluene as a function of the MgF2/MgO ratio. Mg–O–F samples have been prepared by the reaction of magnesium carbonate with hydrofluoric acid. The MgF2–MgO supports, after calcination at 500 °C, are classified as mesoporous of surface area (34–135 m2·g 1) depending on the amount of MgO introduced. The Ir/Mg–O–F catalysts have been tested in the hydrogenation of toluene. The highest activity, expressed as TOF, min 1, was obtained for the catalyst supported on Mg–O–F containing 75 mol%MgF2.  相似文献   

16.
3D-SiC/Al-Si-Mg interpenetrating composites (IPCs) were fabricated by pressureless infiltration method. Interfaces in the 3D-SiC/Al-Si-Mg IPCs were modificated by using two different kinds of aluminum alloy Al-15Si-10Mg and Al-9Si-6Mg to infiltrate into 3D-SiC performs and different treated 3D-SiC preforms unoxidized or preoxidized in air at 1000?°C, 1100?°C and 1200?°C for 2?h respectively. Results showed that desired interfaces can be achieved in both IPCs made with those two aluminum alloys, as demonstrated by their excellent comprehensive properties. When the Al-15Si-10Mg alloy with excessive Si content is used for infiltration, interfaces in 3D-SiC/Al-Si-Mg IPC fabricated with the unoxidized 3D-SiC preform are directly bonded through atomic matching without any interfacial reaction and the composite has the properties of a thermal conductivity (TC) of 224.5?W/(m?°C), a thermal expansion coefficient (CTE) (RT ~ 300?°C) of 7.04?×?10?6/°C and a bending strength (BS) of 277?MPa. When the Al-9Si-6Mg alloy with a lower Si content is used for infiltration, interface zone with a thickness around 200?nm forms in the 3D-SiC/Al-Si-Mg IPC fabricated with the 3D-SiC preform preoxidized at 1000?°C. The reaction-bonded interface is composed of AlN and MgAl2O4 which have better interface affinity with SiC and can isolate SiC effectively from liquid Al against the formation of detrimental Al4C3 phase. The composite has the properties of a TC of 219.5?W/(m °C), a CTE (RT ~ 300?°C) of 7.66?×?10?6/°C and a BS of 318?MPa.  相似文献   

17.
Novel bulk SiOC/spodumene composites have been developed by spark plasma sintering (SPS) at relatively low temperature (1200–1400 °C). Spodumene is a cheap and natural available lithium aluminosilicate mineral which acts as meltable/active filler. At 1300–1400 °C, the Al migrates toward the glassy matrix producing a Si-Al-O network and the crystallization of α-cristobalite. The Cfree phase also experiences a deep transformation. The epitaxial growth of few-layered graphene over SiC particles occurs at 1400 °C. An increase in the phonon transport is observed (36%, 1.28 – 2.14 Wm−1K−1) associated to the reduction of the interface resistance between the partially crystallized SiO2 matrix and the SiC nano-wires/graphene-like carbon conductive phase. The electrical conductivity increases (1.14 ×10−2 – 8.1 Sm−1) due to the densification reached and an increasing ordering degree of the tortuous Cfree phase with a high quality of interconnection and crystallization. Raman parameters are determinant to understand the thermal and electrical response.  相似文献   

18.
In this study, the wettability and interaction of porous TiB2-based composites with liquid aluminum has been investigated. TiB2 composites were consolidated with Ti and Fe additives using pressureless sintering. The composites show good wettability with respect to molten aluminum. During liquid infiltration, Ti and Fe additives are dissolved. Intermetallic compounds containing Ti, Fe and Al are formed within the penetration depth. Since these phases have melting points higher than the experiment's temperature (960 °C), isothermal solidification takes place during the penetration of molten aluminum. Liquid aluminum does not seem to attack the solid skeleton of the TiB2 specimens and no signs of swelling or cracking were detected.  相似文献   

19.
Achieving excellent pyroelectric performance remains a challenge for lead-free piezoelectric ceramics. To meet the requirements of both an enhanced pyroelectric coefficient at room temperature and good thermal stability during the encapsulation of pyroelectric devices, (1–x)K0.48Na0.52NbO3xBi0.5Ag0.5ZrO3–0.2%Fe2O3 (KNN–BAZ–Fe) lead-free ferroelectric ceramics with high Curie temperatures were prepared to obtain improved pyroelectric performance via the coexistence of multiple symmetries. The variation of BAZ content led to the formation of rhombohedral–orthorhombic–tetragonal phase boundary and promoted grain growth, resulting in the best pyroelectric coefficient (p = 5.09 × 10−4 C m−2°C−1) and enhanced figures of merit (Fi = 0.2084 × 10−9 (m V−1), Fv = 0.0142 m2 C−1, Fd = 0.0947 × 10−4 Pa−1/2, and Fe = 17.66 J m−3 K−2) for infrared (IR) detection when x = 0.05. The room-temperature pyroelectric coefficient obtained in this study is approximately four times that of the pure KNN ceramic and is the maximum value reported for niobate-based piezoelectric ceramics. Moreover, compared with the poor thermal stability of barium titanate- and bismuth sodium titanate-based ceramics because of their ultralow Curie temperature or thermal depolarization temperature, the ceramics investigated here exhibit much better thermal stability because of their high Curie temperature (TC > 300°C) and diffused phase-transition behavior, making them more adaptable for practical applications. These results suggest that KNN–xBAZ–Fe ceramics are attractive candidates for applications in the field of IR sensors.  相似文献   

20.
《Ceramics International》2021,47(20):28288-28295
Using the mixed powder of TiH2, graphite, aluminum and vanadium as starting materials, porous TiVAlC ceramics were fabricated by the reactive synthesis technology at 1300 °C. The chemical steadiness of porous TiVAlC along with the effects of sintering temperature on the viscous permeability coefficient, strength, porosity, pore size and volume expansion rate of the porous TiVAlC were explored, and the mechanism of pore formation was also revealed. The preparation process includes five steps as follows: (i) the complete decomposition of stearic acid at 500 °C; (ii) the pyrolysis of TiH2 at 700 °C, converting TiH2 into hydrogen and titanium (iii) The solid-liquid chemical reaction of solid vanadium, titanium and molten aluminum at 700 °C, converting the mixture into V–Al and Ti–Al compounds; (iv) At 900–1100 °C, Surplus V and Ti interact with graphite to synthesize carbides of TiVC2, VC, and TiC; (v) Reactive synthesized carbides (TiVC2, VC, and TiC), Ti2AlC, V–Al and Ti–Al compounds that yield porous TiVAlC at 1300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号