首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Dense polycrystalline cBN (PcBN)–SiCw composites were fabricated by a two-step method: First, SiO2 was coated on the surface of cubic boron nitride (cBN) particles by the sol-gel method. Then, silicon carbide whisker (SiCw)- coated cBN powder was prepared by carbon thermal reaction between SiO2 and carbon powders at 1500°C for 2 hour. Then, cBN–SiCw complex powders were sintered by high-pressure and high-temperature sintering technology using Al, B, and C as sintering additives. The phase compositions and microstructures of cBN–SiCw composites were investigated by X-ray diffraction and scanning electron microscopy, respectively. It was found that the SiCw and Al3BC3 had been fabricated by in situ reaction, which cannot only promote densification but also improve mechanical properties. The relative density of PcBN composites increased from 96.3% to 99.4% with increasing SiCw contents from 5 to 20 wt%. Meanwhile, the Vickers hardness, fracture toughness and flexural strength of as-obtained composites exhibited a similar trend as that of relative density. The composite contained 20 wt% of SiCw exhibited the highest Vickers hardness and fracture toughness of 42.7 ± 1.9 GPa and 6.52 ± 0.21 MPa•m1/2, respectively. At the same time, the flexural strength reached 406 ± 21 MPa.  相似文献   

2.
对比了几种涂覆类cBN磨料的性能及其应用于陶瓷结合剂磨具的性能,通过扫描电子显微镜(SEM)、差热—热重分析仪(DSC-TG)及力学性能测试仪对其进行表征,结果发现:刚玉涂覆cBN磨料的力学性能和热稳定性没有劣化,但与陶瓷结合剂制成磨具抗折强度降低;钛涂覆cBN磨料陶瓷结合剂磨具抗折强度提高,但钛涂覆后cBN磨料力学性能和热稳定性变差;玻璃涂覆cBN磨料的力学性能和热稳定性有所提高,其与陶瓷结合剂在界面处结合紧密,增强了二者之间的把持力,提高了其磨削性能.  相似文献   

3.
Introducing nanoparticles onto the surface of carbon fibers (CFs) is a useful method for enhancing the quality of fiber-matrix interface. In this work, a liquid sizing agent containing functionalized silica nanoparticles (SiO2) was well prepared to improve interfacial strength and mechanical properties of composites. In order to enhance the dispersion of SiO2 nanoparticles in sizing agent, SiO2 nanoparticles were chemically grafted with 3-aminopropyltriethoxysilane (APS), and then silanized silica (SiO2-APS) was introduced into the interphase by a conventional sizing process as well. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) confirmed the successful preparation of SiO2-APS. Scanning electron microscopy (SEM) showed that a uniform distribution of SiO2-APS on the fiber surface and the increased surface roughness. The sized fibers (CF/SiO2-APS) exhibited a high surface free energy and good wettability based on a dynamic contact angle testing. Interfacial microstructure and mechanical properties of untreated and sized CFs composites were investigated. Simultaneous enhancements of interlaminar shear strength (ILSS) and impact toughness of CF/SiO2-APS composites were achieved, increasing 44.79% in ILSS and 31.53% in impact toughness compared to those of untreated composites. Moreover, flexural strength and modulus of composites increased by 32.22 and 50.0% according to flexural test. In addition, the hydrothermal aging resistance of CF/SiO2-APS composites has been improved significantly owing to the introduced Si-O-Si bonds at the interface.  相似文献   

4.
cBN–TiN–TiB2 composites were fabricated by spark plasma sintering at 1773–1973 K using cubic boron nitride (cBN) and SiO2-coated cBN (cBN(SiO2)) powders. The effect of SiO2 coating, cBN content and sintering temperature on the phase composition, densification and mechanical properties of the composites was investigated. SiO2 coating on cBN powder retarded the phase transformation of cBN in the composites up to 1873 K and facilitated viscous sintering that promoted the densification of the composites. Sintering at 1873 K, without the SiO2 coating, caused the relative density and Vickers hardness of the composite to linearly decrease from 96.2% to 79.8% and from 25.3 to 4.4 GPa, respectively, whereas the cBN(SiO2)–TiN–TiB2 composites maintained high relative density (91.0–96.2%) and Vickers hardness (17.9–21.0 GPa) up to 50 vol% cBN. The cBN(SiO2)–TiN–TiB2 composites had high thermal conductivity (60 W m−1 K−1 at room temperature) comparable to the TiN–TiB2 binary composite.  相似文献   

5.
The influence of TiO2 amount on the microstructure and relevant properties of SiO2-Al2O3-B2O3-Na2O-Li2O-BaO vitrified bond and vitrified bond CBN composites were systematically studied via SEM, EDS, FTIR, and XPS. Results indicated that adding TiO2 could regulate the quantity of β-quartz solid solution and rutile crystals in the vitrified bond and considerably affect the thermal properties and mechanical strength of this bond. Under sintering temperature, the dense B2O3 oxide layer on the CBN surface diffused into vitrified bond and reacted with Ti4+ enriched at the interface to form a strong chemical Ti-B bond. This reaction extensively improved the interfacial wettability between the CBN and the vitrified bond. When the TiO2 amount was 6wt.%, the interfacial wettability significantly improved, and the wetting angle decreased from 68° to 43°. The flexure strength and hardness of the composites were 116.18 MPa and 128 HRB, which were 48.49% and 34.74% higher than those of the basic-formula composites, respectively.  相似文献   

6.
In order to improve the oxidation protective ability of SiC-coated carbon/carbon (C/C) composites, a SiC–Si–ZrB2 multiphase ceramic coating was prepared on the surface of SiC-coated C/C composite by the process of pack cementation. The microstructures of the coating were characterized using X-ray diffraction and scanning electron microscopy. The coating was found to be composed of SiC, Si and ZrB2. The oxidation resistance of the coated specimens was investigated at 1773 K. The results show that the SiC–Si–ZrB2 can protect C/C against oxidation at 1773 K for more than 386 h. The excellent oxidation protective performance is attributed to the integrity and stability of SiO2 glass improved by the formation of ZrSiO4 phase during oxidation. The coated specimens were given thermal shocks between 1773 K and room temperature for 20 times. After thermal shocks, the residual flexural strength of the coated C/C composites was decreased by 16.3%.  相似文献   

7.
《Ceramics International》2023,49(6):9173-9184
The effects of Al2O3 content on the sintering behaviour, microstructure, and physical properties of Al2O3/vitrified bonds (SiO2–Al2O3–B2O3–BaO–Na2O–Li2O–ZnO–MgO) and Al2O3/vitrified bond cubic boron nitride (CBN) composites were systematically investigated using X-ray diffraction, differential scanning calorimetry, dilatometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Various amounts of Al2O3 promoted the formation of BaAl2Si2O8 and γ-LiAlSi2O6, increasing the relative crystallinity of the Al2O3/vitrified composite from 85.0 to 93.2%, resulting in residual compressive stress on BaAl2Si2O8, thereby influencing the thermal behaviour and mechanical properties of the Al2O3/vitrified composite. The bulk density, porosity, flexural strength, hardness, and thermal conductivity of 57.5 wt% Al2O3 sintered at 950 °C were 3.12 g/cm3, 6.1%, 169 MPa, 90.5 HRC, and 4.17 W/(m·K), respectively. The coefficient of thermal expansion of the bonding material was 3.83 × 10?6 °C?1, which was comparable to that of CBN, and the number of N–Al bonds were increased, which boosted the flexural strength of the Al2O3/vitrified CBN composite to 81 MPa. The excellent mechanical properties, compact structure, and suitable interfacial bonding state with the CBN grains of the Al2O3/vitrified composite make it a promising high-performance bonding material for superhard abrasive tools.  相似文献   

8.
Cubic boron nitride (cBN) powder was coated with Ni nanoparticle and SiO2 nanolayer (abbreviated as cBN/Ni and cBN/SiO2, respectively) by rotary chemical vapor deposition (RCVD), and compacted with SiO2 powder by spark plasma sintering at 1473–1973 K for 0.6 ks. The effects of Ni and SiO2 coatings on the densification, phase transformation of cBN and hardness of SiO2–cBN composites were compared. The phase transformation of cBN to hBN was identified at 1973 K in SiO2–cBN/SiO2 composites, 300 K higher than that in SiO2–cBN/Ni composites, indicating that SiO2 retarded the transformation of cBN. The relative density of SiO2–cBN/SiO2 with 50 vol% cBN sintered at 1873 K was 99% with a hardness of 14.5 GPa.  相似文献   

9.
A series of Fe2O3–CeO2 composite catalysts were synthesized by coprecipitation and characterized by X-ray diffraction (XRD), BET surface area measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Their catalytic activities in CO oxidation were also tested. The Fe2O3–CeO2 composites with an Fe molar percentage below 0.3 form solid solutions with the CeO2 cubic fluorite structure, in which the doped Fe3+ initially substitutes Ce4+ in fluorite cubic CeO2, but then mostly locate in the interstitial sites after a critical concentration of doped Fe3+. With an Fe molar percentage between 0.3 and 0.95, the Fe2O3–CeO2 composites are mixed oxides of the cubic fluorite CeO2 solid solution and the hematite Fe2O3. XPS results indicate that CeO2 is enriched in the surface region of Fe2O3–CeO2 composites. The Fe2O3–CeO2 composites have much higher catalytic activities in CO oxidation than the individual pure CeO2 and Fe2O3, and the Fe0.1Ce0.9 composite shows the best catalytic performance. The structure-activity relation of the Fe2O3–CeO2 composites in CO oxidation is discussed in terms of the formation of solid solution and surface oxygen vacancies. Our results demonstrate a proportional relation between the catalytic activity of cubic CeO2-like solid solutions and their density of oxygen vacancies, which directly proves the formation of oxygen vacancies as the key step in CO oxidation over oxide catalysts.  相似文献   

10.
N-doped carbon coated TiO2 microspheres (CNx/TiO2) were synthesized by the carbonization of the polypyrrole (PPy) coating on the surface of TiO2 microspheres and used as support to disperse Pt and PtCo nanoparticles for investing the selective hydrogenation of cinnamaldehyde. The support and catalysts have been characterized in terms of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The hydrogenation results showed the conversion increased with an increase of CNx amount until the CNx coated TiO2 microspheres completely.  相似文献   

11.
《Ceramics International》2017,43(14):10645-10653
Alumina-cubic boron nitride (cBN) composites were prepared using the spark plasma sintering (SPS) technique. Alpha-alumina powders with particle sizes of ∼15 µm and ∼150 nm were used as the matrix while cBN particles with and without nickel coating were used as reinforcement agents. The amount of both coated and uncoated cBN reinforcements for each type of matrix was varied between 10 to 30 wt%. The powder materials were sintered at a temperature of 1400 °C under a constant uniaxial pressure of 50 MPa. We studied the effect of the size of the starting alumina powder particles, as well as the effect of the nickel coating, on the phase transformation from cBN to hBN (hexagonal boron nitride) and on the thermo-mechanical properties of the composites. In contrast to micro-sized alumina, utilization of nano-sized alumina as the starting powder was observed to have played a pivotal role in preventing the cBN-to-hBN transformation. The composites prepared using nano-sized alumina reinforced with nickel-coated 30 wt% cBN showed the highest relative density of 99% along with the highest Vickers hardness (Hv2) value of 29 GPa. Because the compositions made with micro-sized alumina underwent the phase transformation from cBN to hBN, their relative densification as well as hardness values were relatively low (20.9–22.8 GPa). However, the nickel coating on the cBN reinforcement particles hindered the cBN-to-hBN transformation in the micro-sized alumina matrix, resulting in improved hardness values of up to 24.64 GPa.  相似文献   

12.
D. Arumugam 《Electrochimica acta》2010,55(28):8709-8716
LiMn2O4 spinel cathode materials were coated with 0.5, 1.0, and 1.5 wt.% CeO2 by a polymeric process, followed by calcination at 850 °C for 6 h in air. The surface-coated LiMn2O4 cathode materials were physically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron microscopy (XPS). XRD patterns of CeO2-coated LiMn2O4 revealed that the coating did not affect the crystal structure or the Fd3m space group of the cathode materials compared to uncoated LiMn2O4. The surface morphology and particle agglomeration were investigated using SEM, TEM image showed a compact coating layer on the surface of the core materials that had average thickness of about 20 nm. The XPS data illustrated that the CeO2 completely coated the surface of the LiMn2O4 core cathode materials. The galvanostatic charge and discharge of the uncoated and CeO2-coated LiMn2O4 cathode materials were measured in the potential range of 3.0-4.5 V (0.5 C rate) at 30 °C and 60 °C. Among them, the 1.0 wt.% of CeO2-coated spinel LiMn2O4 cathode satisfies the structural stability, high reversible capacity and excellent electrochemical performances of rechargeable lithium batteries.  相似文献   

13.
In this paper, we reported the synthesis of composite conductive powders of antimony-doped tin oxide (Sb–SnO2) coated onto kaolinite. Structure and morphology of the samples were systematically characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectrum (XPS). The results showed that Sb–SnO2 nanoparticles (< 10 nm) were successfully coated as thin layers on the surface of kaolinite. The antimony-doped tin oxide/kaolinite (ATK) composites retained the flake morphology like the original kaolinite and had a resistivity of 273.2 Ω·cm. Sb–SnO2 layers were proved to attach to the kaolinite surface via the Sn–O–Si or Sn–O–Al bonds. The growth mode of Sb–SnO2 layers onto the kaolinite was investigated.  相似文献   

14.
Plasma spraying technique was used to deposit thin TiO2-based photocatalytic coatings on foamed aluminum. Before plasma spraying, the composites of nano-TiO2 powder (P25) and nano-ZnO/CeO2/SnO2 powders were agglomerated into microsized powders by spray-drying process. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photocatalytic activity evaluation by the decomposition of gas-phase benzene (C6H6) were applied to characterize the starting powders and the coatings, respectively. The results showed that all the three plasma sprayed TiO2-based coatings were the mixture phases of anatase and rutile. On the splats’ surfaces of the as-sprayed coatings, fine nano-crystalline particles were observed. However, grain growth occurred on the surface of plasma sprayed 90%TiO2–10%ZnO coating. The XPS spectra revealed that the Ti, Zn, Ce and Sn elements existed on the surfaces of plasma sprayed TiO2-based coatings as the chemical states of Ti4+, Zn2+, Ce4+ and Sn4+, respectively, whilst, the oxygen element was composed of three kinds of chemical states, i.e. crystal lattice oxygen, hydroxyl oxygen and physical-adsorbed oxygen. It was found that plasma sprayed 90%TiO2–10%CeO2 coating and 90%TiO2–10%SnO2 coating exhibited similar photocatalytic activity, which was higher than that of plasma sprayed 90%TiO2–10%ZnO coating. The photocatalytic activity is not only dependent on the anatase content but also on the surface morphology and the hydroxyl content formed on the surface of plasma sprayed TiO2-based coatings as well as the additive character.  相似文献   

15.
The microstructures and properties of vitrified diamond composites, which are composed of diamond grains and vitrified bonds with varying Cu and Zn doping amounts, were comprehensively investigated in this work. The results including TG curves indicated that compared with Zn, Cu powders were more beneficial to prevent the oxidation of diamond. Both of them could consume oxygen and be oxidized to CuO or ZnO, which would enter into the glass network but not damage the structure. Hence, the vaporization of metals, especially Zn, would remain tiny voids and the lower refractoriness could easily lead the glass to foam. The incorporation of Cu or Zn in appropriate amounts (4 wt.%) not only decreased the refractoriness of vitrified bonds but also increased the wettability between diamond grains and vitrified bonds. The flexural strength of the diamond composites incorporating 4 wt.% Cu could reach 60.35 MPa, which increased by about 19.6% than the basic diamond composite and its growth rate was also higher than the value of composites containing 4 wt.% Zn (7.8%). In general, the addition of Cu played greater role than Zn on the protection of diamond grains and properties of vitrified diamond composites.  相似文献   

16.
Effect of CeO2 and Al2O3 contents on phase composition, microstructures, and mechanical properties of Ce–ZrO2/Al2O3 composites was studied. The CeO2 content in CeO2–ZrO2 varied from 7 to 16 mol%, and the Al2O3 content in Ce‐ZrO2/Al2O3 composites were 7 and 22 wt%. When CeO2 content was ≤10 mol%, high Al2O3 content contributed to hinder the tetragonal‐to‐monoclinic ZrO2 phase transformation during cooling and decrease the density of microcracks in the composites. Tetragonal ZrO2 single‐phase was obtained in the composites with ≥12 mol% CeO2, regardless of the Al2O3 content. Hardness, flexural strength, and toughness were dependent on CeO2 and Al2O3 contents which were related to the microcracks, grain size, and phase transformation. The high flexural strength and toughness of the composites with 7wt% Al2O3 could be obtained at an optimum CeO2 content of 12 mol%, whereas those of the composites with 22 wt% Al2O3 could be achieved in the wide CeO2 content range of 8.5‐12 mol%.  相似文献   

17.
《Ceramics International》2020,46(13):21202-21210
Differences in structure and properties of Na2O–Al2O3–B2O3–SiO2 vitrified bonds and vitrified diamond composites prepared by sol-gel and melting methods were methodically discussed. Results showed that the vitrified bond prepared by sol-gel method contained more [AlO4] tetrahedron and owned higher bending strength, with the maximum value reaching 137 MPa, 31.73% higher than that prepared by melting method (104 MPa). As the sintered temperature rose, coefficient of thermal expansion of the vitrified bond prepared by sol-gel method increased first and then decreased, acquiring a maximum value of 5.75 × 10−6 °C −1 at 720 °C, which was still much lower than the minimum value of vitrified bond prepared by melting method (7.02 × 10−6 °C −1). The vitrified diamond composite prepared by sol-gel method possessed lower sintering shrinkage than that prepared by melting method, and could be applicable to the production of grinding tools with high dimensional accuracy. What's more, the maximum bending strength of vitrified diamond composites obtained by sol-gel method was 106 MPa, 24.7% higher than that of vitrified diamond composites prepared by melting method (85 MPa).  相似文献   

18.
Boron nitride (BN) thin coating has been formed on the surface of chemically activated polyacrylonitrile (PAN) carbon fiber by dip coating method. Dip coating was carried out in saturated boric acid solution followed by nitridation at a temperature of 1200 °C in nitrogen at atmospheric pressure to produce BN coating. Chemical activation improved surface area of PAN fiber which favours in situ carbothermal reduction of boric acid. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) have shown the formation of boron nitride. The X-ray photoelectron spectroscopy reveals that the coating forms a composite layer of carbon, BN/BOxNy and some graphite like BCN with local structure of B–N–C and B(N–C)3. The oxidation resistance of the coated fiber was significantly higher than uncoated carbon fiber. Tensile strength measurement reveals that the BN coated fiber maintained 90% of its original strength. As compared to chemical vapor deposition (CVD), this process is simple, non-hazardous and is expected to be cost effective.  相似文献   

19.
《Polymer Composites》2017,38(7):1474-1482
Functionalized silicon dioxide nanoparticles (nano‐fSiO2) were uniformly deposited on the surface of carbon fibers (CFs) using a coating process which consisted of immersing the fibers directly in a suspension of nano‐fSiO2 particles and epoxy monomers in 1‐methyl‐2‐pyrrolidinone (NMP). The 0° flexural properties, 90° flexural properties, and Interlaminar shear strength (ILSS) mechanical properties of unidirectional epoxy composites made with nano‐fSiO2+epoxy sized carbon fibers, with control fibers, and with epoxy‐only sized fibers were measured and compared. An obvious increase of the fiber/matrix adherence strength was obtained with the nano‐fSiO2+epoxy coating. The nano‐fSiO2+epoxy sized CF/epoxy composites showed a relative increase of 15%, 50%, and 22% in comparison to control fibers, for the Interlaminar shear strength, the 90° flexural strength and the 90° flexural modulus, respectively, but little e difference was measured between the different systems for the 0° flexural properties. The observation of the fracture surfaces by scanning electron microscopy of composite fracture confirmed the improvement of the interfacially dependent mechanical properties. POLYM. COMPOS., 38:1474–1482, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
In this study, a hybrid coating comprised of NiCoCrAlY fabricated by HVOF method, Ni–CeO2 composite coated by electrodeposition, and aluminide coating applied by low pressure chemical vapor deposition (LPCVD) method are investigated. To elucidate the formation process of aluminide coating, the microstructure and properties of the applied coatings were examined by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and EDS analyses. It was concluded that the desired β-NiAl phases are uniformly created within a single step on the surface. Furthermore, with the extending of the coating duration from 2 to 4 h, the thickness of the aluminide coating was increased from 14 to 25 μm. The thickness values were increased even further in the presence of Ni–CeO2 coating, where the growth mechanism was also changed. Within 4 h, a coating with a thickness of roughly 50 μm was obtained. Moreover, in the presence of Ni–CeO2 coating, it was observed that the inward diffusion of aluminum was predominant at the beginning of the process, whereas with longer processing durations, the outward diffusion of the nickel becomes dominant instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号