首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
《Ceramics International》2023,49(2):2394-2400
It is well known that aqueous gel-casting is challenging to prepare high-porosity ceramics due to the considerable drying shrinkage, cracking, and deformation of green bodies during drying caused by the high surface tension of water. Porous Y2SiO5 ceramics with high porosity were prepared by introducing carbon fibers as a support material in the drying process of aqueous gel-casting to reduce shrinkage during drying. Burning out the carbon fibers after drying does not negatively affect the properties of the porous ceramic. As prepared green bodies by aqueous gel-casting have low shrinkages of 8.69%–6.81% during drying processes and high compressive strength of 13.73 ± 1.55–10.66~0.49 MPa. The higher compressive strength of the green body has a positive significance for processing porous ceramics into special-shaped structures. As prepared porous Y2SiO5 ceramics have high porosity of 73.94%–87.71%, lightweights of 1.16–0.55 g?cm3, extremely low thermal conductivities of 0.134 ± 0.006 to 0.051 ± 0.001 W?m?1?k?1, relatively low dielectric constants of 2.34–1.58, and tan δ are lower than 1.25 × 10?3. Porous Y2SiO5 ceramics with excellent dielectric properties and thermal insulation properties meet the requirements of thermal insulation and wave transmission integration of radome materials. Aqueous gel-casting also enriches the preparation methods of high-porosity Y2SiO5 ceramics.  相似文献   

2.
Mullite fibrous porous ceramics is one of the most commonly used high temperature insulation materials. However, how to improve the strength of the mullite fibrous porous ceramics dramatically under the premise of no sacrificing the low sample density has always been a difficult scientific problem. In this study, the strategy of using mullite nanofibers to replace the mullite micron-fibers was proposed to fabricate the mullite nanofibrous porous ceramics by the gel-casting method. Results show that mullite nanofibrous porous ceramics present a much higher compressive strength (0.837 MPa) than that of mullite micron-fibrous porous ceramics (0.515 MPa) even when the density of the mullite nanofibrous porous ceramics (0.202 g/cm3) is only around three quarters of that of the mullite micron-fibrous porous ceramics (0.266 g/cm3). The obtained materials that present the best combination of mechanical and thermal properties can be regarded as potential high-temperature thermal insulators in various thermal protection systems.  相似文献   

3.
How to improve the strength of fibrous porous ceramics dramatically under the premise of no sacrificing its low density and thermal conductivity has remained a challenge in the high-temperature thermal insulation field. In this paper, a new kind of high-strength mullite fiber-based ceramics composed of interlocked porous mullite fibers was prepared by nanoemulsion electrospinning and dry pressing method. Results show that as to the porous ceramics with the same density (~ 0.8 g/cm3), the three-dimensional skeleton structure composed of porous mullite fibers was much denser than that composed of solid mullite fibers. Therefore, porous mullite fiber-based ceramics exhibited a higher compressive strength (5.53 MPa) than that of solid mullite fiber-based ceramics (3.21 MPa). In addition, porous mullite fiber-based ceramics exhibited a superior high-temperature heat insulation property because the porous structure in fibers could reduce the radiant heat conduction. This work provides new insight into the development of high-temperature thermal insulators.  相似文献   

4.
Anisotropic layered porous ceramics are crucial to satisfy the demand for devices with directional functions. However, challenges, such as complicated preparation processes and difficulties in regulating the oriented structure, severely limit their application. Here, multilayered mullite ceramics (MLMCs) with specific porosities and strongly anisotropy properties, were prepared by designing porous thin-layered units and an interlayer layout, in combination with a simple gel-casting. Benefiting from the suitable slurry properties, the samples did not show obvious defects, and a perfect bonding was observed between the layers. The optimized MLMCs exhibited a porosity of 65.12%, the differences in compressive and flexural strengths of 14 ( ± 0.7) and 5 ( ± 0.2) MPa in different pressure directions respectively, and the anisotropy factor of thermal conductivity up to 0.98, as well as exhibited good high temperature thermal insulation properties. Ultimately, the MLMCs formed transverse heat conductor and longitudinal heat insulation heat-transfer patterns, with promising applications in thermal insulation.  相似文献   

5.
High thermal conductivity and low dielectric constant are the more and more important properties for high-frequency substrate materials to enhance their heat radiation and reduce signal delay. In this work, a series of BN-SiO2 composite ceramics for high frequency application were successfully synthesized by hot-pressing sintering method. And their structures, thermal and dielectric properties were systematically studied. According to the results, the excellent thermal conductivity with low dielectric constant and low dielectric loss has been obtained in the BN-SiO2 ceramic. Compared to the pure SiO2, the sample with 50?wt% BN addition sintered at 1650?℃ exhibited excellent physical properties, including a high thermal conductivity of 6.75?W/m?K which is almost five times higher than that of pure SiO2 and a low dielectric constant of 3.73. The achieved high thermal conductivity and appropriate dielectric property of the BN-SiO2 composite ceramic make it a promising candidate for high-frequency substrate application.  相似文献   

6.
In this work technical ceramics containing industrial inorganic wastes was carried out. Ceramic formulations prepared with clay, magnesium oxide and residues of kaolin and alumina as raw materials, were formed in a disk-shaped specimens using the uniaxial pressing process and sintering at temperatures from 950°C to 1400°C. The mineralogical, physical and dielectric characteristics of the fired samples were investigated. The dielectric properties, the relative dielectric constant (εr) and the loss tangent (tan δ) were evaluated at frequencies of 0.1, 1, 10, and 100?kHz at room temperature. Mullite and cordierite were present as major phases at the highest temperatures. Relative dielectric constant values closest to that of mullite (εr = ~ 5 to ~ 6) and cordierite (εr =?~ 4 to ~ 6) at 1?kHz. On the other hand, the lowest dielectric losses (tan δ ~ 0.06 to ~ 0.04) were observed for the formulations containing the mullite major phase, and tan δ ~ 0.009 to ~ 0.003 for formulations that showed cordierite as main phase. It was verified that an increase in temperature promoted a reduction of porosity, a property that had a direct influence on the dielectric properties of the formulations. The materials obtained from the residues presented low dielectric constants and loss tangents, which make them suitable for use in electrical and electronic systems.  相似文献   

7.
《Ceramics International》2022,48(15):21700-21708
A two-step method, combined with cold isostatic pressing, was used to prepare CeO2-doped ZrP2O7 ceramics, and their microstructure, mechanical properties, thermal conductivities, and dielectric properties were determined. It was found that CeO2 doping could increase the Zr–P and P–O bond lengths, which in turn decreased the thermal conductivity of the ZrP2O7 matrix. Doping with 12 wt% CeO2 simultaneously reduced the sintering temperature and improved the mechanical properties of the ZrP2O7 ceramics, while retaining its low thermal conductivity and good dielectric properties. The maximum cold modulus of rupture of a sample at 1250 °C was 75.91 MPa, which met most conditions for use at room temperature. A COMSOL model was used to predict the thermal conductivity, based on the microstructure, with a relatively high degree of accuracy. The thermal conductivity of the CeO2-doped samples was lower than 1.083 W/(m·K). The dielectric constant was in the range of 5.93–6.52 at 20–40 GHz, and the dielectric loss was less than 4 × 10?3. The ZrP2O7-doped ceramics have potential for application in millimetre wave technology, satellite communication, and vehicle radar fields, because they can meet the high thermal insulation requirements for these applications.  相似文献   

8.
《Ceramics International》2022,48(20):30325-30331
High-performance thermal storage ceramics can enable utilization of solar thermal power generation plants. In this work, in situ synthesis was used to prepare mullite thermal storage ceramics. Calcined bauxite, talc, and kaolin were used as raw materials. The effects of additives (e.g., SiC, Si3N4, TiC, and ZrB2) on the density, mechanical durability, phase components, microstructure, and thermal performance of the mullite ceramics were studied. The results showed that the thermal expansion coefficient, thermal conductivity, and heat storage density of the mullite ceramics were affected by their phase components. SiC and Si3N4 did not decompose during the in situ syntheses, but TiC and ZrB2 decomposed. With the addition of 10 wt% SiC, the thermal conductivity improved to 2.72 W (m K)?1 (298 K). The heat storage density of this material was 688 kJ kg?1 (273–1073 K). Consequently, the in situ synthesized mullite thermal storage ceramic with added SiC could be a promising candidate material for a compound latent-sensible heat storage system.  相似文献   

9.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

10.
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased.  相似文献   

11.
SiO2-Al2O3-CaO-based glass (10–60 wt%)/mullite composites were investigated for the LTCC and radome applications. The optimum densification temperatures decreased from 1550°C (10 wt% glass) to 1400°C (30 wt% glass) by means of liquid-phase sintering, and to 850°C–825°C (50–60 wt% glass) by means of viscous phase sintering. XRD analysis showed that mullite was the main phase as well as in situ crystallized anorthite after 825°C. The composite with 20 wt% glass was a suitable candidate for the radome applications (bulk density = 2.86 g/cm3 after sintering at 1450°C, dielectric constant (loss) = 7.12 (0.0025) at 5 MHz, thermal expansion coefficient = 4.27 ppm/°C between 25°C and 800°C, thermal shock resistance parameter = 162°C), and the composite with 50 wt% glass was a suitable candidate for the low-temperature cofired ceramic applications (bulk density = 2.64 g/cm3 after sintering at 850°C, dielectric constant (loss) = 6.79 (0.0043) at 5 MHz, thermal conductivity = 2.11 W/m⋅K at 25°C, and thermal expansion coefficient = 3.93 ppm/°C between 25°C and 300°C).  相似文献   

12.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

13.
《Ceramics International》2016,42(13):14843-14848
A novel fibrous porous mullite network with a quasi-layered microstructure was produced by a simple vacuum squeeze moulding technique. The effects of organic binder content, inorganic binder and adsorbent on the microstructure and the room-temperature thermal and mechanical properties of fibrous porous mullite ceramics were systematically investigated. An anisotropy microstructure without agglomeration and layering was achieved. The fibrous porous mullite ceramics reported in this study exhibited low density (0.40 g/cm3), low thermal conductivity (~0.095 W/(m K)), and high compressive strength (~2.1 MPa in the x/y direction). This study reports an optimal processing method for the production of fibrous porous ceramics, which have the potential for use as high-temperature thermal insulation material.  相似文献   

14.
Microstructural and thermal properties of plasma sprayed mullite coatings   总被引:1,自引:0,他引:1  
Thick mullite (3Al2O3–2SiO2) coatings were fabricated by atmospheric plasma spraying (APS) in a mixture of crystalline and amorphous phases, as confirmed by X-ray diffraction (XRD) analysis. The coatings were isothermally heat treated in order to study recrystallization mechanism of the glassy phase. The morphology and the microstructure of both mullite feedstock and coatings were investigated by using scansion electron microscopy (SEM). The porosity of as-sprayed coating was in the range between 2 and 3% and substantially remained unchanged after thermal treatment. The thermal expansion of as-sprayed and annealed coatings was measured during heating up to the temperature of crystallization and the corresponding high-temperature extent of shrinkage was calculated. The differential scanning calorimetry (DSC) curves at different heating rates showed a sharp exothermic peak between 1243 and 1253 K, suggesting a rapid recrystallization of the amorphous phase. Finally, the heat capacity of recrystallized mullite coating was measured by DSC experiments. It was approximately 1.02 × 103 J/kg K at 373 K and increased with increasing test temperature.  相似文献   

15.
《Ceramics International》2019,45(12):14517-14523
High-strength insulating ceramic materials were prepared using lightweight mullite microspheres with dense surfaces and high internal porosity as the main raw material and silica sol as a binder. The effects of AlF3·3H2O content on the in situ formation and growth of mullite whiskers were analyzed by X-ray diffraction and scanning electron microscopy. The obtained results showed that mullite whiskers were formed in large quantities at 1200 °C using AlF3·3H2O and V2O5 as additives; their optimal growth was observed at 4 wt% AlF3·3H2O and 1 wt% V2O5. The apparent porosity of the produced specimens was 39%; the MOR and CCS of the specimens were 31 and 152 MPa, respectively; the HMOR at 1300 °C was 11.32 MPa; and the thermal conductivity at 900 °C was 0.783 W m−1 K−1. The staggered whisker network structure formed between mullite microspheres not only improved the mechanical properties of the material, but also refined its pore size, reduced the thermal conductivity, and enhanced the thermal insulation properties.  相似文献   

16.
In-situ grown mullite toughened zirconia ceramics (mullite-zirconia ceramics) with excellent mechanical properties for potential applications in dental materials were fabricated by gelcasting combined with pressureless sintering. The effect of sintering temperature on the microstructure and mechanical properties of mullite-zirconia ceramics was investigated. The results indicated that the columnar mullite produced by reaction was evenly distributed in the zirconia matrix and the content and size of that increased with the increase of sintering temperature. Mullite-zirconia ceramics sintered at 1500 °C had the optimum content and size of the columnar mullite phase, generating the excellent mechanical properties (the bend strength of 890.4 MPa, the fracture toughness of 10.2 MPa.m1/2, the Vickers hardness of 13.2 GPa and the highest densification). On the other hand, zirconia particles were evenly distributed inside the columnar mullite, which improved the mechanical properties of columnar mullite because of pinning effect. All of this clearly confirmed that zirconia grains strengthened columnar mullite, and thus the columnar mullite was more effective in enhancing the zirconia-based ceramics. Simultaneously, the residual alumina after reaction was distributed evenly in the form of particle, which improved the mechanical properties of the sample because of pinning effect. Overall, the synergistic effect of zirconia phase transformation toughening with mullite and alumina secondary toughening improved the mechanical properties of zirconia ceramics.  相似文献   

17.
《Ceramics International》2023,49(1):847-854
Mullite fiber-based porous ceramics have been widely used in the field of heat insulation. To further broaden their applications in other fields, such as filtration and sound absorption, mullite whiskers and alumina platelets were introduced as the secondary structural materials in mullite fiber-based porous ceramics by a sol-gel combining heat-treating method, and new fiber-based porous ceramics with a unique multilevel pore structure were developed. By adjusting the molar ratios of aluminium tri-sec-butoxide to aluminium fluoride and calcination temperature, these fiber-based porous ceramics not only presented the characteristics of lightweight (maximum density of 0.38 g/cm3) and good heat insulation (minimum thermal conductivity of 0.11 W/mK) comparable to traditional fiber-based porous ceramics, but also showed a superior specific surface area (up to 11.5 g/m2) and excellent sound absorption performance (average sound absorption coefficient as high as 0.728). Owing to these outstanding characteristics, the corresponding porous ceramics are expected to be promising multifunctional materials in diverse fields, especially thermal insulation and sound absorption.  相似文献   

18.
《Ceramics International》2022,48(24):36210-36217
In this work, the influence of Al-metal powder addition upon that thermal, mechanical and dielectric properties of aluminium nitride (AlN) ceramic was studied. The findings show that adding Al-metal powder improves not only the mechanical and thermal properties of the AlN ceramic but also has no negative impact on its dielectric properties. Based on Y2O3 as sintering aid, the AlN ceramic with 1.0 wt% Al doping were 14.35% higher thermal conductivity, 11.73% higher flexural strength and 59.50% higher fracture toughness than those doped without Al, respectively. This study showed that the addition of Al-metal powder may favor the purifying of the AlN lattice and the formation of homogenous and isolated second phase, which would increase the AlN–AlN interfaces and improve the thermal conductivity. Furthermore, the grain boundaries of AlN ceramics might be strengthened by the isolated second phases due to the thermal mismatch between the second phases and AlN grains, thus strengthening and toughening the AlN ceramic doped with Al. However, the large additive amount of Al powder (>1.0 wt%) was not help the isolation and homogenization of the second phase, giving a deterioration in an AlN ceramic's mechanical and thermal properties. These results suggest that the introduction of an appropriate dose of aluminium metal powder is a simple method that can be used to improve the AlN ceramic's mechanical and thermal properties simultaneously.  相似文献   

19.
《Ceramics International》2017,43(13):9973-9978
This paper examined experimentally and theoretically the thermal diffusibility (α), heat capacity (CP1) at a constant pressure (1 atm, 101.33 kPa) and thermal conductivity (κ=CP1α) for the porous mullite ceramics with 0–55% porosity in a wide temperature range from 298 to 1073 K. The change in the κ values with temperature or porosity for the porous mullite was similar to the temperature dependence or porosity dependence of the α values, which were greatly reduced by the air included in the pores. The κ values for the porous mullite were theoretically analyzed with two model structures of pore–dispersed mullite continuous phase system (A model) and mullite–dispersed pore continuous phase system (B model). The measured κ values at 0–23% porosity agreed well with the κ values calculated for model A structure. In the high porosity range from 33% to 55%, the measured κ values deviated from the κ curve calculated for model A structure and approached the κ value curve for model B structure with increasing porosity. The real microstructure of 30–60% porosity is equivalent to the mixed microstructure of model A and model B for the thermal conductivity measurement.  相似文献   

20.
《应用陶瓷进展》2013,112(3):147-152
Abstract

Mullite ceramic, as one of high performance thermal storage ceramics for solar thermal power generation systems, was in situ fabricated via semidry pressing and pressureless sintering in the air. Andalusite (57–68 wt-%) and calcined bauxite (24–29 wt-%) were used as the raw materials, with kaolin and a tiny of boric acid being added to promote the densification and improve the mechanical properties. The best physical properties and thermal shock resistance were obtained on an optimum A3 sample sintered at 1600°C for 3 h, i.e. a bending strength of 120·44 MPa and 30 cycles thermal shock cycling without cracking (wind cooling from 1000°C to room temperature) with a loss of bending strength of 8·7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号