首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用热重技术对稻壳(DK)和杨树锯末(JM)燃烧进行分析,考察了不同预处理方式对稻壳燃烧特性的影响,并研究了不同升温速率及稻壳和杨树锯末掺混质量比对掺混燃烧特性及燃烧动力学的影响。结果表明:水洗及酸洗可使稻壳燃烧TG-DTG热重曲线向高温区移动,最大失重速率及对应失重温度升高。水洗使稻壳综合燃烧特性指数提高2.5×10-7~5.9×10-7%/(min2·℃3),而酸洗使稻壳综合燃烧特性指数下降11×10-7~11.9×10-7%/(min2·℃3)。不同预处理后稻壳在挥发分析出燃烧阶段的活化能高于未处理稻壳,酸洗后稻壳焦炭燃烧阶段活化能降低16.94 kJ/mol,而水洗使稻壳焦炭燃烧阶段活化能升高。提高稻壳添加比例,混合燃料着火温度和燃尽温度降低。随着升温速率的提高,混合样品综合燃烧特性指数和残余率升高。70%稻壳和30%杨树锯末混合燃料在升温速率40℃/min下燃烧产生协同效应。  相似文献   

2.
采用热重分析法研究了城市污泥(SS)与小麦秸秆(WS)在220℃下共水热炭化(Co-HTC)产物水热炭(Hydrochar)的燃烧特性与反应动力学。对比分析水热炭从室温升至1 000℃的燃烧特性,采用KAS法计算燃烧过程中样品的活化能。结果表明,水热炭化后,污泥和秸秆的着火温度升高、失重率下降。随着混合物中WS质量分数从30%增加到70%,共炭化产物的综合燃烧特性指数从3.47增加到11.35,燃烧性能显著增强,且Ti和Tf之间的温度区间变窄。城市污泥与秸秆混合水热制备的生物质炭燃烧过程中存在协同作用,在320℃时协同作用最强。WS质量分数为50%时,水热炭燃烧的平均活化能达到最小值,为22.55 kJ/mol。  相似文献   

3.
为了探讨垃圾与煤的混燃特性,选取城市生活垃圾(MSW)和烟煤(BC)为研究对象,通过热重分析法研究烘焙温度、掺混比例、升温速率对样品燃烧特性的影响,并采用Kissinger-Akahira-Sunose(KAS)法计算样品的活化能.结果表明:MSW经220℃,260℃和300℃低温烘焙后,热值都有所提升,随着烘焙温度上...  相似文献   

4.
为了研究煤泥与玉米芯的混燃特性,利用热重-质谱(TG-MS)联用技术研究了煤泥、玉米芯单独及混合燃烧的着火、燃尽等特性,在线监测了气体释放物CO_2、SO_2和NO_2,并分析了其变化规律。结果表明,当升温速率为10℃/min时,煤泥中掺烧玉米芯可以使混合样品着火温度降低204.62℃,燃尽温度降低26.52℃,燃烧性能得到明显改善。随着升温速率提高,混合样品在挥发分析出燃烧阶段,以及固定碳燃烧阶段的燃尽温度和最大失重速率都相应提高,而混合样品的着火温度变化不大。各样品燃烧时,CO_2和NO_2释放峰与其燃烧失重峰对应。煤泥中掺混玉米芯燃烧,降低了SO_2气体的排放。  相似文献   

5.
生物质作为可再生能源,具有资源丰富、着火容易、污染物排放低等优点,但存在能量密度低、水分高等缺点。煤粉则具有能量密度高的优点和着火困难、污染物排放高等缺点。将生物质高比例掺混入煤粉(生物质/煤粉质量比大于5∶5),可有效解决生物质利用率低、能量密度低、煤粉着火较难和污染物排放高等问题,提高能源利用率,实现节能减排,该方法已成为一种新型能源利用技术。目前学者研究主要集中低掺混比例(小于5∶5),国内常见生物质与煤粉在高掺混比例下的混燃特性尚有待深入研究。采用热重分析法研究了不同生物质(玉米秸秆、稻杆、玉米芯、棉花及杨木屑)与煤粉在高掺混比例下(0∶10、5∶5、6∶4、7∶3、8∶2、10∶0)的燃烧特性和动力学特性,分析了不同生物质种类及掺混比例对燃料热失重特性、特征温度、反应动力学、燃尽特性及燃烧特性指数等影响,并确定不同生物质的最佳掺混比例。结果表明:混合样品的失重曲线表现为失水、挥发分燃烧、固定碳燃烧3个阶段。最大失重速率在第1阶段变小,第2阶段变大,燃烧整体前移。混合样品的着火温度和燃尽温度分别比煤粉下降约100和40℃,在协同作用下,掺混后杨木屑的着火温度随掺混比例的增加而增...  相似文献   

6.
宋德才  王泉海  双伟  卢啸风 《应用化工》2014,(10):1784-1787,1795
利用热重分析仪研究不同粒径、不同升温速率下川北低热值煤矸石着火稳定性和综合燃尽特性,并且对煤和煤矸石不同掺混比例的热失重进行了研究。结果表明,1.0 mm以下低热值煤矸石的着火稳定性与粒径没有明显关系,且均极易稳定着火。煤矸石的综合燃尽指数则随着煤矸石粒径的增大而降低;提高升温速率,可以使低热值煤矸石的燃烧强度增加,但着火、燃尽温度均升高;低热值煤矸石中掺混煤可以提高热失重率,改善低热值煤矸石的着火特性,达到更好的燃烧效果,有利于提高锅炉的安全性和经济性。  相似文献   

7.
抗生素菌渣与煤混合燃烧特性及其动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以抗生素菌渣、煤为研究对象,利用热重-差示扫描量热仪(TG-DSC)研究两种物质单独以及混合燃烧的燃烧特性,并采用Coats-Redfern法确定混合燃烧的动力学参数。分析菌渣掺混比和粒径对燃烧过程的影响,阐明菌渣与煤混合燃烧的可能以及超细化燃烧的优势。结果表明:抗生素菌渣与煤混合燃烧主要包括3个阶段,添加菌渣能明显改善煤的燃烧特性。随着菌渣掺混比例的增加,着火温度、燃尽温度呈现降低的趋势。超细、非超细混合燃烧燃尽特性指数在菌渣掺混比为30%时最高,分别为5.82×10-3、5.49×10-3。超细混合燃烧活化能均低于非超细混合燃烧,说明超细化燃烧有利于降低活化能。超细、非超细混合燃烧活化能E和指前因子A之间均存在动力学补偿效应。  相似文献   

8.
为充分利用果壳生物质废弃物,采用热重分析对油茶壳、核桃壳、澳洲坚果壳进行了燃烧实验研究,考察了不同升温速率下3种果壳生物质的燃烧特性及动力学参数。结果表明:3种果壳生物质燃烧特性不同,但燃烧特性参数均随升温速率升高而增大;随着升温速率的增加,着火点、燃尽温度、最大燃烧速率、平均燃烧速率及综合燃烧特性指数提高;10℃/min时,油茶壳、核桃壳、澳洲坚果壳综合燃烧特性指数分别为0.56×10-7、1.18×10-7、0.88×10-7;3种果壳生物质的燃烧反应遵循一级反应动力学模型,相关系数(R2)均达0.93以上,低温阶段活化能为30.40~52.41 kJ/mol,高温阶段活化能为18.49~40.62 kJ/mol,低温阶段活化能均大于高温阶段。  相似文献   

9.
为了掌握固体回收燃料(Solid Recovered Fuel, SRF)掺烧对污泥焚烧处置的热反应特性及烟气环境特性的影响,通过使用德国耐驰公司生产的热综合分析仪、SEM、XRD和GA-21plus烟气分析仪着重解析了不同掺烧比例时SRF与污泥混燃过程的热重规律、综合燃尽特征指数、结渣特性和烟气中NOx排放特性。结果表明:混烧过程存在明显的多峰失重现象,主要集中在192.3~645.3℃;SRF掺烧提高了燃料的失重速率,掺混比11%时,最大失重速率达0.14%/min,显著高于污泥单独焚烧的失重速率。随着SRF掺烧比提高,燃料的着火温度和燃尽温度降低,充分燃烧阶段向低温区域偏移。SRF掺混比为11%时,稳定燃烧性能指数和综合燃烧性能指数分别提升了1.38倍和1.17倍,改善了污泥单独焚烧时的着火特性。另外,SRF掺混后燃料灰熔融温度升高,灰分黏附程度降低,颗粒聚团强度降低,从而减弱了污泥单独焚烧时结渣情况,然而掺混燃烧导致烟气中NOx排放量增加。  相似文献   

10.
生物质与兰炭掺混燃烧被认为是解决大量碳排放、NOx和SO2 等空气污染相关问题的潜在途径。分别通过热重试验和滴管炉试验研究纯兰炭、兰炭与生物质混合物空气分级燃烧特性,分析掺混比对混合燃料着火温度、燃尽温度、结渣特性、沾污特性及燃烧特性指数的影响,确定适宜空气分级燃烧比例、最佳燃烧温度和最佳掺混比。结果表明,掺烧生物质可有效降低混合燃料着火点,其着火点由474℃降至300℃,掺烧生物质后燃尽温度略降低,兰炭掺混生物质燃烧未明显提高燃烧特性指数;兰炭粉掺混生物质燃烧有高灰分沉积倾向,结渣倾向小。相比掺烧前,不同温度掺烧生物质后出口NOx和SO2质量浓度均较低,1 200℃出口NOx和SO2质量浓度降幅均较高,分别达87.27%和80.2%。未空气分级时,综合出口NOx等参数得出,适宜生物质质量分数为30%~40%,最佳燃烧温度1 200~1 300℃。分级燃烧时,生物质质量分数30%的NOx初始排放随温度变化平缓,稳...  相似文献   

11.
采用自制的生物质固定床热解装置研究了不同热解终温对花生壳炭化产物的影响。结果表明:随着热解终温的增加,生物炭质量和能源产率总体上呈现降低趋势,热解气产率呈现上升趋势(热值显著提高),其中液体质量产率在550℃时达到最大值;热解终温的增加使花生壳生物炭中固定碳、灰分不断提高,C元素不断提高,H元素与O元素含量则不断降低,生物炭的化学和生物稳定性提高;生物炭的热值在500℃时达到最大值,为24.346MJ/kg。生物炭的燃烧过程包括水分蒸发、固定碳及挥发分燃烧和燃尽等3阶段,其燃烧起始时间明显晚于花生壳,不同温度制备的生物炭的综合燃烧特性指数(S)从大到小的顺序依次为:C500 > C350 > C600 > C400 > C450 > C550;热解终温为550℃时,生物炭的比表面积、微孔表面积、总孔容积和微孔容积均最大,分别为50.58m2/g、29.56m2/g、0.01543cm3/g和0.01111cm3/g,与活性炭相比仍有较大差距,需要进一步处理。  相似文献   

12.
污泥和褐煤通过共水热碳化预处理以制备高品质固体燃料,为污泥和低阶煤的有效处理提供了一种可行方案。本研究主要考察了城市污泥(SS)和褐煤(LC)在不同温度下(120,180,240和300℃)进行共水热碳化制得的固相产物(水热炭)的热化学转化特性和规律,包括燃烧、热解和半焦CO2气化过程,并分析了这些过程中的协同作用。结果表明,共水热碳化预处理对城市污泥和褐煤的热利用行为有显著影响。一方面,共水热碳化处理后的水热炭相对其计算值具有更高的产率、煤化程度、热值等,同时具有更低的灰分含量。另一方面,混合物水热炭在燃烧、热解和半焦CO2气化过程均表现出一定的协同作用(促进燃烧和热解行为,降低气化活性),且水热温度在240℃附近时,这种作用最为明显。鉴于热解和气化过程的协同效果均低于燃烧过程,共水热碳化产物被认为更适合用于燃烧。这些发现表明,将共水热碳化改性提质处理与后续热化学工艺相结合,对于能源的产生和有机废弃物的利用都有一定的积极意义。  相似文献   

13.
为了探索谷壳糠粉的燃烧特性,基于粉尘层和粉尘云实验研究了粒径对其最低着火温度的影响,采用哈特曼管和锥形量热仪测试了不同粒径谷壳糠粉的爆炸下限和热释放性能,利用热重/差式扫描量热仪系统地研究其燃烧特性和燃烧动力学。结果表明:随着谷壳糠粉粒径的减小,其最低着火温度(MIT)和爆炸下限浓度(LEL)降低,但最大爆炸压力P和爆炸压力上升速率均增大。其中粒径为80~96μm样品的爆炸压力为0.9MPa,其粉尘层(5mm及10mm)和粉尘云最低着火温度分别为130℃和430℃,燃烧特性指数SN达到3.82×10-7,较粒径为180~1250μm样品提高了57.2%;在307s出现最大释热峰,且最大释热峰值强度增加至62kJ/m2,对应热解过程的反应活化能由35.35kJ/mol(180~1250μm样品)增大至51.15kJ/mol,表明其燃烧过程随粒径的减小由扩散控制转变为动力学控制过程。  相似文献   

14.
流化床铁基载氧体辅助富氧燃烧下传统石英砂床料被铁基载氧体替代,铁基载氧体扩展了传统床料的“热载体”的功能,另承担了“氧载体”的角色,为调节炉内氧分布与煤燃烧过程匹配提供了新思路。本文在热重实验平台探究了10%O2/90%CO2气氛下分析纯Fe2O3、赤铁矿及钢渣三种铁基载氧体辅助无烟煤焦燃烧特性及动力学。结果表明,相较于纯无烟煤焦燃烧,铁基载氧体辅助燃烧下无烟煤焦的燃烧特性得到显著改善,其中燃烧速率提高29%以上,燃尽温度降低65℃以上,综合燃烧指数提升2倍以上,活化能与指前因子同步增加且表现出“补偿效应”。三种铁基载氧体中分析纯Fe2O3对无烟煤焦燃烧特性的改善略优于赤铁矿和钢渣,钢渣可作为流化床铁基载氧体辅助富氧燃烧的床料替代石英砂。  相似文献   

15.
污水厂污泥量日益增加,所含的有机物可用于厌氧发酵产甲烷,但目前多数污水处理厂多为低有机质污泥。本文围绕低有机质污泥投加不同药剂联合低温热水解对污泥溶解性物质变化及厌氧发酵规律的影响情况进行研究。结果表明,投加药剂联合低温热水解不仅有助于有机物[可溶糖、可溶蛋白和TVFA(挥发性有机酸(]的溶出与生成,而且有助于后续厌氧发酵产甲烷。在本实验所研究的低温热水解(污泥含固率为8%,热水解处理温度为90℃,处理时间为24 h)及药剂投加量[NaOH:0.018 g·(g DS(-1、Ca(OH(2:0.016 g·(g DS(-1、CaCl2:0.0375g·(g DS(-1]的条件下,有机物溶出与生成的效果为NaOH> Ca(OH(2> CaCl2,其中热水解联合NaOH中可溶糖、可溶蛋白和TVFA浓度分别达到3051 mg·L-1、10686 mg·L-1和5740 mg·L-1。对于产甲烷促进效果为NaOH> CaCl2> Ca(OH(2,其中投加NaOH后最大累积产甲烷量可达到101.9 ml·(g VS(-1。  相似文献   

16.
张放  傅吉全 《工业催化》2016,24(3):54-57
以工业酚醛树脂为碳源,三嵌段聚合物F127为模板剂,制备碳分子筛。采用N_2吸附-脱附对制备的碳分子筛进行表征,研究炭化制备工艺对碳分子筛孔径分布的影响。结果表明,炭化温度、炭化时间和炭化升温速率对碳分子筛孔径分布影响较大。在炭化升温速率为1℃·min~(-1)、炭化温度800℃和炭化时间1 h条件下制备的碳分子筛孔径分布最为集中,BET比表面积716.59 m~2·g~(-1),单点总孔容0.557 75 cm~3·g~(-1),单点吸附微孔孔容0.301 81 cm~3·g~(-1)。  相似文献   

17.
利用TG-DTG法和DTA法研究了无烟煤催化燃烧时燃点的变化情况,结果表明Fe2O3可使无烟煤的燃点降低。基于无烟煤燃点的形成原因和催化热解过程,研究了催化热解过程中热解转化率、热解气组成、半焦表面结构的变化情况,结果表明Fe2O3促进了无烟煤的热解,热解转化率、热解气的组成明显变化,热解气热值增加。催化热解产生的半焦表面形貌粗糙,颗粒细碎,比表面积大。由于热解过程直接影响到点燃过程,因此通过催化热解的研究,可知催化燃烧过程中均相燃烧(热解气燃烧)提供给异相燃烧(半焦燃烧)的热量高于非催化燃烧。同时催化热解所得半焦的吸附氧气能力强,在低温时吸附氧气的速率较快,缩短了达到点燃时所需氧气浓度的时间,进而降低了无烟煤的燃点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号