首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective electromagnetic interference (EMI) shielding requires materials with high permittivity. The current study reports 3D printed polymer-derived SiOC ceramics (PDC) modified with SiC nanowires (SiCnw) exhibiting both high real and imaginary parts of permittivity within X-band. SEM results indicated that a large number of pores and cracks exist in the SiOC, and twinned SiCnw were uniformly grown among them along with the existence of graphite microcrystals when the sintering temperature was 1500 ℃. The real part of permittivity ranged from 16.6 to 28.9 while the imaginary part from 31.7 to 34.2 in X-band. The EMI total shielding effectiveness (SET) of the ceramics could reach 34.7 dB with absorption loss (SEA) of 29.3 dB and reflection loss (SER) of 5.4 dB. Meanwhile, the 3D printed PDC-SiOC ceramics at 900 ℃ sintering temperature possess certain mechanical properties with the magnitude of compressive strength being 12.57 MPa.  相似文献   

2.
《Ceramics International》2019,45(15):18988-18993
Aiming to prepare high-performance electromagnetic interference (EMI) shielding materials, chopped carbon fibers were incorporated into mullite ceramic matrix via rapid prototyping process of spark plasma sintering (SPS). Results indicate that Cf/mullite composites with only 1 wt% of carbon fibers exhibit highest shielding effectiveness (SET) over 40 dB at a small thickness of 2.0 mm, showing great advantages both in terms of performance and thickness compared with many mature carbon/ceramic composites. The high EMI shielding properties mainly depend on two mechanisms of absorption and reflection in this present work. The enhanced absorption and reflection of electromagnetic wave are ascribed to the promotional electrical conductivity arising from the formation of conductive network by introduction of carbon fibers. Regarding enhanced electrical conductivity, notable intensified interfacial polarization on a large number of interfaces between mullite matrix and carbon fibers is also the key factor to the improved absorption, which makes absorption play a dominant role in the significant improvement of EMI SET. The Cf/mullite composites with excellent EMI shielding properties and thin thickness show great potential application as EMI materials.  相似文献   

3.
《Ceramics International》2019,45(10):12672-12676
Macroscopic parallel aligned non-woven carbon fibers were incorporated into Al2O3 composites in this study to evaluate the contribution of multiple reflections to the total electric magnetic interference (EMI) shielding. Results indicate that parallel aligned non-woven carbon fiber layers contribute significantly to the total EMI shielding effectiveness (SET) of Al2O3 composites by largely enhancing the EMI absorption, and seven parallel aligned thin non-woven carbon fiber layers finally make the almost microwave-transparent Al2O3 an excellent EMI shielding material with an EMI SET as high as 29–32 dB in the X-band frequency range. The volume fraction of carbon fibers in Al2O3 composites with seven carbon fiber layers is calculated to be only 0.5%, and therefore the EMI SE enhancement efficiency by parallel aligned large non-woven carbon fiber layers is much higher than other highly conducting nano fillers. It validates the significance of multiple reflections in achieving high EMI shielding properties in ceramic composites and provides an instructive approach to design efficient EMI shielding ceramic composites.  相似文献   

4.
Ceramic matrix composites are typically prepared by a costly, time-consuming process under severe conditions. Herein, a cost-effective C/SiC composite was fabricated from a silicon gel-derived source by Joule heating. The β-SiC phase was generated via carbothermal reduction, and the carbon fabric showed a well-developed graphitic structure, promoting its thermal and anti-oxidation stabilities. Owing to the excellent dielectric loss in carbon fabric, SiC and SiO2 as well as the micropore structure of the ceramic matrix, the absolute electromagnetic interference shielding (EMI) effectiveness (SSE/t) reached 948.18 dB?cm2?g-1 in the X-band, exhibiting an excellent EMI SE. After oxidation at 1000 °C for 10 h in the air, the SSE/t of the composite was only reduced to 846.02 dB?cm2?g-1. The C/SiC composite promises the efficient fabrication of high-temperature resistant materials for electromagnetic shielding applications.  相似文献   

5.
This study focuses on the electromagnetic interference shielding effectiveness (EMI SE) of SiC nanowire/SiC ceramic composites (SiCnw/SiC) manufactured by chemical vapor infiltration of SiCnw aerogels with carbon‐rich SiC. The total EMI SE of a 1.0 mm thick ceramic composite specimen with density of only 2.68 g/cm3, was found to be 43‐44 dB, which indicates an excellent EM shielding capability of the ceramic composite corresponding to blocking of 99.99% of the incident EM signal. It was found that the carbon‐rich CVI‐SiC matrix possess excellent EM shielding properties, therefore, the CVI‐SiC CMCs themselves possess an excellent EM shielding property as a result of the carbon‐rich SiC matrix.  相似文献   

6.
《Ceramics International》2022,48(8):10516-10525
Electromagnetic interference (EMI) shielding materials are receiving more and more attentions and becoming a hot research topic because of their wide range of applications in life, defense and other fields. The development of green EMI shielding materials with tunable shielding effectiveness (SE) is a high pursuit and a great challenge for researchers. Here, we restricted the growth of TiO2 on the Ti3C2Tx surface by adjusting the annealing temperature. This regulated the dipole and interface polarization and the construction of the conductive network, and improved the impedance matching. The Ti3C2Tx/TiO2 heterostructured material was rationally designed and achieved an efficient EMI SE of 35.1 dB at 18 GHz when the annealing temperature was 600 °C. This work develops new avenues for the future design of efficient, controllable green EMI shielding materials. Simultaneously, this heterostructured material has great potential as a versatile green shielding material for civil, commercial and military aerospace applications.  相似文献   

7.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

8.
Herein, the influence of oxidation temperature on the oxidation behavior, microstructure and electromagnetic shielding performance of layered porous ceramics has been systematically investigated. Layered SiC/PyC porous ceramics were prepared by using low-pressure chemical vapor infiltration (LPCVI) method. The oxidized SiC/PyC layered porous ceramics exhibited a negligible mass reduction of 11.94 mg·cm?3, which indicates the excellent high-temperature oxidation resistance of porous ceramics. The electromagnetic shielding performance of SiC/PyC porous ceramics did not exhibit any obvious change even after oxidation at high temperature from 900 to 1300 °C for 10 h. The SET of the layered SiC/PyC porous ceramics was 24.1, 20.0, 19.5, 19.0, 19.8 dB after oxidation at 25 °C, 900 °C, 1000 °C, 1100 °C and 1300 °C, which corresponds to a decrease of 17.01%, 19.09%, 21.16% and 17.84%, respectively. The high-temperature oxidation has rendered a more significant influence on the reflection efficiency of the layered SiC/PyC porous ceramics.  相似文献   

9.
《Ceramics International》2022,48(16):22845-22853
Effective electromagnetic interference (EMI) shielding materials have garnered substantial interest for their efficacy in attenuating electromagnetic wave energy, ensuring data confidentiality, ensuring the operational stability of fragile electronic systems. To begin, artificially cultured diatom frustules (DF)-derived porous silica (DFPS) skeletons were constructed as templates in this study. Porous ceramics hot-pressed at 800 °C displayed a high compressive strength with a high specific surface area due to their three-dimensional (3D) multilayered and porous structures. Then, mechanically robust Ti3C2Tx/DFPS composites with exceptional EMI shielding performance were fabricated by immersing porous DF-based ceramics into Ti3C2Tx solutions and annealing in an argon environment to increase the materials’ shielding efficiency (SE). The EMI SE of composites hot-pressed at 800 °C achieved the maximum EMI SE of 43.2 dB in the X-band and a compressive strength of 67.5 MPa, establishing a hitherto unreported balance of mechanical characteristics and shielding performance. Prolonged transmission paths, multiple dissipation, scattering and reflection of electromagnetic energy were achieved using a well-maintained hierarchical porous silica framework decorated with MXene, with adsorption caused by surface MXene serving as the primary shielding mechanism for the composites. Due to their superior overall performance, MXene/DFPS EMI shielding composites have a bright future in the aircraft sector as delicate electronic device components.  相似文献   

10.
Graphene nanoplatelets (GNPs) were successfully incorporated into silicon carbide (SiC) ceramic matrix in a self-aligned pattern and the obtained materials displayed extremely high value of shielding effectiveness (SE) over 40?dB by adding only 3?wt.% GNPs, which was the highest SE value in all SiC-based composites reported in literature up to now. It was found that the texture distribution of GNPs was crucial to achieve the high electromagnetic interference shielding performance of SiC/GNPs composites, which can contribute to the significant improvement of both absorption and reflection. The improved absorption originated from the formation of network of mini capacitors comprised of self-aligned GNPs and multiple reflections. The improvement of reflection was attributed to the high electrical conductivity of the composite due to the introduction of GNPs. These results indicate that SiC/GNPs composites can be used as high-performance ceramic-based EMI shielding materials.  相似文献   

11.
The SiCf/SiC composites containing various thickness of pyrolytic carbon (PyC) interphase were prepared and their properties were investigated for electromagnetic interference (EMI) shielding applications in the frequency of 8.2–12.4 GHz. The composites containing 310 nm thickness (3.3 vol%) PyC interphase show an about 25 dB shielding effectiveness in the whole frequency band. Interestingly, the contribution of reflection to the EMI shielding effectiveness increases and the contribution of absorption decreases as the PyC interphase thickness increases.  相似文献   

12.
Searching for thermal conductive materials with high electromagnetic interference (EMI) shielding effectiveness (SE) is the key to protect electronic equipment against electromagnetic pollution and excess heat emission. Herein, NdB6/SiO2 bulks with high EMI SE and thermal conductivity which also exhibit good mechanical properties were prepared by liquid phase sintering (LPS). The NdB6/SiO2 bulk prepared by LPS at 1550 °C has fine grain-size, which is beneficial to improving mechanical property and EMI shielding performance. It exhibits high conductivity of 1.47 × 104 S/cm, high EMI SE of 55.1 dB in K band, and high thermal conductivity of 37.9 W/m K. It also possesses flexural strength of 266 MPa and Vickers hardness of 14.8 GPa. Thus, NdB6/SiO2 composite ceramics are promising candidates for EMI shielding with good heat dissipation and mechanical load-bearing capabilities.  相似文献   

13.
Electromagnetic interference shielding effectiveness (EMI SE) of multifunctional Fe3O4/carbon nanofiber composites in the X-band region (8.2–12.4 GHz) is studied. Here, we examine the contributing effects of various parameters such as Fe3O4 content, carbonization temperature and thickness on total shielding efficiency (SEtotal) of different samples. The maximum EMI SE of 67.9 dB is obtained for composite of 5 wt.% Fe3O4 (0.7 mm thick) with the dominant shielding by absorption (SEA) of electromagnetic radiation. The enhanced electromagnetic shielding performance of Fe3O4/carbon nanofiber composites is attributed to the increment of both magnetic and dielectric losses due to the incorporation of magnetite nanofiller (Fe3O4) in electrically conducting carbon nanofiber matrix as well as the specific nanofibrous structure of carbon nanofiber mats, which forms a higher aspect ratio structure with randomly aligned nanofibers. Furthermore, we prove that the addition of elastomeric polydimethylsiloxane (PDMS) as a coating for carbon nanofiber composite strengthens the composite structure without interfering with its electromagnetic shielding efficiency.  相似文献   

14.
Electrospun unidirectional SiC fibers reinforced SiCf/SiC composites (e-SiCf/SiC) were prepared with ∼10% volume fraction by polymer infiltration and pyrolysis (PIP) process. Pyrolysis temperature was varied to investigate the changes in microstructures, mechanical, thermal, and dielectric properties of e-SiCf/SiC composites. The composites prepared at 1100 °C exhibit the highest flexural strength of 286.0 ± 33.9 MPa, then reduced at 1300 °C, mainly due to the degradation of electrospun SiC fibers, increased porosity, and reaction-controlled interfacial bonding. The thermal conductivity of e-SiCf/SiC prepared at 1300 °C reached 2.663 W/(m∙K). The dielectric properties of e-SiCf/SiC composites were also investigated and the complex permittivities increase with raising pyrolysis temperature. The e-SiCf/SiC composites prepared at 1300 °C exhibited EMI shielding effectiveness exceeding 24 dB over the whole X band. The electrospun SiC fibers reinforced SiCf/SiC composites can serve as a potential material for structural components and EMI shielding applications in the future.  相似文献   

15.
Carbon nanotube films (BPs) as EMI shielding materials can be applied in electronic and communication devices due to their high electrical conductivity. Sandwich structures can offer excellent shielding effectiveness by introducing a wave-transmitting layer between conductive films. However, the optimization of the structure demands a deep investigation and plays a crucial role in the final shielding properties of the composites. In this work, BPs are incorporated into epoxy substrates with variable thicknesses (1–6 mm) to fabricate epoxy/BP sandwich structures. The morphology of the CNT films is analyzed by SEM, and the electrical conductivity of all prepared samples is measured by 4-point method. The electromagnetic tests are carried out in the X-band (8.2–12.4 GHz) through the scattering parameters. SEM images reveal a porous structure without visible agglomeration. The electrical conductivity of the BP reaches up to 996 S/m, whereas the values for epoxy/BP composites varies in the range of 8.51–3.13 S/m (1 to 3 mm). BP total shielding efficiency (SET) is approximately 14 dB along the X-band spectrum, with similar contributions of reflection and absorption losses. While, the composites show mainly absorbing behavior, especially in the thicker samples, with more significant SET values (23.4 dB–6 mm).  相似文献   

16.
Harmful electromagnetic radiations that are generated from different electronic devices could be absorbed by a light weight and mechanically flexible good electromagnetic interference (EMI) shielding polymer nanocomposite. On the other hand, different electronic wastes (“e-wastes”) which are generally polymer building materials generated from wastes of dysfunctional electronic devices are not naturally biodegradable. Our recent effort has been employed to produce bio-degradable EMI shielding polymer nanocomposite. For that purpose, we had prepared a 50:50 ratio polylactic acid/thermoplastic polyurethane polymer nanocomposite by mixing the conducting carbon black with the blend following the facile and industrially feasible solution mixing method. Morphological characterizations by scanning electron microscopy and transmission electron microscopy analysis revealed the co-continuous morphology of the neat blend as well as polymer nanocomposites with the preferential distribution of conductive filler on a particular polymer phase. The polymer nanocomposites gave good mechanically with improved thermal properties. We got EMI shielding effectiveness around −27 dB with a low percolation threshold at around 30 wt% filler loading in the polymer nanocomposite at the X-band frequency domain (8.2–12.4 GHz). Later we had studied the biodegradability of the PLA/TPU along with their composites (TXPXCX) by employing the respirometry method and got a satisfactory result to ensure their biodegradability.  相似文献   

17.
The electromagnetic properties and EMI shielding effectiveness of Cf/mullite composites via the spark plasma sintering were intensively investigated in the gigahertz range (8.2–12.4 GHz). Experimental results have revealed excellent electromagnetic properties and a high value of EMI shielding effectiveness (nearly 40 dB) for Cf/mullite composites with 1.65 vol% carbon fillers at thickness of 2 mm. We quantitatively characterize the contributions of microstructural features to overall EMI shielding effectiveness using a micromechanics-based homogenization model. The EMI shielding effectiveness enhances with respect to the Cf volume concentration before the threshold. The increasing trend of EMI shielding effectiveness with respect to AC (alternating current) frequency can be attributed to enhanced conductivity at high gigahertz range. It is demonstrated that filler and frequency dependent interface effects are essential to obtain excellent electromagnetic properties of Cf/mullite composite. The present research can provide guidances for the design of ceramic-based composites applied in high-temperature EMI shielding devices.  相似文献   

18.
In this article, lightweight silver@carbon microsphere@graphene (Ag@CMS@GR) composite materials were fabricated. First, carbon microsphere (CMS) was prepared by redox hydrothermal method in the presence of FeCl3 and polyvinyl alcohol. Next, on the surface, silver was deposited to form Ag@CMS particles. And finally, the graphene sheets were added to connect Ag@CMS particles to obtain Ag@CMS@GR composites. Because of the silver nanoparticle may form a conductive pathway, Ag@CMS with relative high content of silver nanoparticles show superior EMI shielding properties. Next, graphene was introduced into Ag@CMS with relative low content of silver particles to form Ag@CMS@GR composites, which is helpful for decreasing the apparent density of composites to around 1.01 g·cm−3. And the composites also show good EMI shielding properties. The highest SE and specific SE values of Ag@CMS@GR reached 39.26 dB and 38.87 dB·cm3·g−1 with 5 wt % graphene content. The EMI shielding mechanism of Ag@CMS@GR composites was discussed. It can be potentially used for lightweight EMI shielding applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48459.  相似文献   

19.
The SiCnws/SiC nanocomposites were in situ synthesized by using nickel carbon foam as catalyst and skeleton. This technique has a series of advantages including simple operation, low cost, and high efficiency. Due to the excellent microwave absorption and thermal properties of SiCnws, SiCnws/SiC nanocomposites possess excellent electromagnetic shielding performance with a high SET value of 38.3 dB and good thermal properties with thermal conductivity of 13.77 ± 0.098 wm−1k−1 at room temperature. Meanwhile, the bending strength of the nanocomposites is 110.9 ± 7.7 MPa. The friction coefficient of nanocomposites is about 0.26 with a wear speed of about 67 um3/s. Therefore, the nanocomposites integrate many advantages including lightweight (2.0 g/cm3), excellent electromagnetic shielding, good heat conduction, high strength, and wear resistance.  相似文献   

20.
《Ceramics International》2021,47(21):29995-30004
Novel and highly effective electromagnetic interference (EMI) shielding materials are desirable to attenuate unwanted electromagnetic radiation or interference produced by electrical communication devices. Here, functional Ti3C2Tx@Ni particles with a core@shell and sandwich like structure were fabricated using the facile electroless plating technique. The core@shell structured Ti3C2Tx@Ni consists of a Ti3C2Tx core and a Ni shell. In the core, thin Ni layers are sandwiched in between Ti3C2Tx flakes. EMI shielding effectiveness (SE) values of Ti3C2Tx@Ni/wax composites increased with increasing Ti3C2Tx@Ni content. The average EMI SE value of 60 wt% Ti3C2Tx@Ni/wax composite was 43.12 dB, increased by 73% as compared with 24.93 dB for the same content of pristine Ti3C2Tx in wax in the frequency range 2–18 GHz. An average EMI SE of 74.14 dB was achieved in the 80 wt% Ti3C2Tx@Ni/wax. The enhanced EMI shielding performance should be ascribed to the synergic effect of the absorption loss of the Ti3C2Tx core and the magnetic loss of the Ni shell and the inner Ni layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号