首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Homogeneous transparent optical glass–ceramics precipitated with unique nonlinear crystals are promising materials for photonic applications. We have utilized heat treatment method to prepare transparent ZnO–Bi2O3–B2O3 glass–ceramic containing Bi2ZnB2O7 nonlinear nanocrystals. A large third-order nonlinear susceptibility χ(3) of glass–ceramic is measured by Z-scan technique, which mainly attributed to unique [BiO6] and [B2O5] units in Bi2ZnB2O7 crystal structure and the quantum size effect of nanoparticles. The discovery is of great potential in the application of nonlinear optical integrated devices.  相似文献   

2.
The glass–ceramics containing a rarely achievable nanocrystalline SrIINbIVO3 phase in the 53.75SiO2–18.25K2O–9Bi2O3–9SrO–9Nb2O5–0.5CeO2–0.5Eu2O3 (mol%) glass system were prepared by the melt‐quench technique followed by a two‐stage controlled heat treatment. The unusual oxidation state of Nb in SrIINbIVO3 crystal is 4+ and upon heat treatment of the samples at lower temperature of 500°C for several hours, the glass composition and chemical environment around Nb ions played a key role for the formation of SrIINbIVO3 in the glass–ceramics. The microstructure of the glass–ceramics was studied using TEM and FESEM. The TEM images advocate 10–40 nm crystallite size of SrIINbIVO3. FTIR study confirms that all the samples consist of SiO4, BiO3, BiO6, and NbO6 structural units. The refractive index at different wavelengths was found to vary in the range 1.7105–1.7905 and increase with increase in heat‐treatment time. The luminescence spectra of Eu3+‐doped glass and glass–ceramics were recorded at 465 nm excitation wavelength and the luminescence intensity is found to be increased with heat‐treatment time due to increase in crystallinity. The high intensity ratio of 5D07F2 to 5D07F1 indicates that the Eu3+‐doped nanocrystalline SrIINbIVO3 glass–ceramics are promising candidate materials as red‐light source.  相似文献   

3.
We report on the formation of Bi2ZnB2O7 crystal structures with designated patterns in ZnO–Bi2O3–B2O3 glass by femtosecond laser direct writing. The crystallization mechanism in glass is investigated by crystallization kinetics analysis and simulation of the three‐dimensional temperature field distribution. The crystallized regions show larger third‐order optical nonlinearity than the unirradiated region in glass by Z‐scan technique. This finding is of great potential in application of nonlinear optical integrated devices and development of new nonlinear materials.  相似文献   

4.
Y2O3 transparent ceramics were annealed under different atmospheric conditions. The samples annealed in H2 containing atmosphere were colorless and had high in-line transmittances from the near-UV to the mid-infrared wavelength range. This is due to the elimination of carbon contamination and preventing the formation of high concentration oxygen interstitial defects in the sintered samples. Annealing in oxygen containing atmosphere resulted in stronger optical absorption in the visible wavelength region. High temperature annealing in O2 or hot isostatic pressing under high partial pressure of O2 (O2 HIP) led to obviously declining of transparency in a broader wavelength range of 230–800 nm. The Er:Y2O3 ceramics annealed in H2 containing atmosphere had high in-line transmittance of about 80% at 400 nm as well. Room temperature laser oscillation at 2.7 µm was also obtained on the 5%H2/95%Ar atmosphere annealed Er:Y2O3 ceramics.  相似文献   

5.
Understanding the impact of bismuth cations on the optical properties of borosilicate glass is significant for manipulating borate glass applications. In this paper, the influence of bismuth cations on both structural and optical properties of borosilicate glass doped with NiO was investigated. Different glass samples, containing different amounts of Bi2O3 and a constant amount of NiO, were prepared and studied. Infrared (IR) analysis was carried out to study the internal structure within the investigated glass samples. Optical absorption studies were performed to investigate the impact of Bi2O3 content on optical properties of the BiBaNiB-glasses. Astonishingly, with Bi2O3 addition, an absorption band at 380 nm has appeared. Moreover, this band is overlapped with the Urbach edge; which regularly produced an artificial edge-like feature at ~450 nm. A detailed deconvolution protocol has been implemented for an appropriate understanding of these spectra and unraveling the hidden Urbach edge. Optical band gap energy, linear and nonlinear refractive index for each BiBaNiB sample were calculated. Furthermore, the metallization criterion was calculated to examine the metallic or insulating nature of the BiBaNiB-glasses. The values of the nonlinear third-order susceptibility and nonlinear refractive index were increased with Bi2O3 doping. The BiBaNiB-glasses exhibited outstanding stability and optical band gap than the pristine glass sample, which makes it possible for practical applications.  相似文献   

6.
Trivalent erbium ions doped Bi2O3-B2O3 transparent glass ceramics containing CaF2 were prepared and characterized through X -ray diffraction, scanning electron microscopy, Fourier transform infrared absorption, optical absorption, and near infrared emission for 1.53 μm fiber lasers. The glass ceramics obtained by applying thermal treatment at 575 °C for 5 h and 575 °C for 10 h contain Bi3B5O12 and CaF2 crystallites. The Judd-Ofelt theory was applied to evaluate various spectroscopic and laser characteristic properties. The NIR emission corresponding to the 4I13/24I15/2 (∼1.53 μm) transition was studied by exciting the samples at 514.5 nm laser radiation. The stimulated emission cross-sections of ∼1.53 μm luminescence were also obtained applying the Mc Cumber theory. The experimental results confirm that the transparent glass ceramic obtained at a thermal treatment of 575 °C for 10 h is more suitable to design fiber lasers for diverse applications in the fields of industry, medicine and scientific research.  相似文献   

7.
《Ceramics International》2017,43(7):5837-5841
Three Yb:YAG transparent ceramics with Yb2O3 doping concentrations of 1, 10, and 15 at%, respectively were made into silica-clad hybrid fibers using an on-line feeding molten core approach. The diffusion of silica was mitigated such that the lowest SiO2 concentration was 36.4 wt%, and consequently, the Yb2O3 content could reach 8.93 wt% in the fiber core. The fiber core transformed from a YAG ceramic to an yttrium aluminosilicate glass, and the formation of abundant Q2 silicate species implied that the structure of the core glass maintained some environments similar to that of YAG with Q2–AlO4 tetrahedra. The absorption and emission spectra of the obtained fibers were compared to those of Yb:YAG ceramics, and the self-absorption effect was analyzed in detail. All three fibers could output lasers under 940 or 970 nm pumping. The maximum output power of the Yb:YAG-derived fibers was higher than that of ceramic wafers owing to the cladding pump technology, which offered a new method to improve the application of ceramics.  相似文献   

8.
The transparent polycrystalline erbium and ytterbium co-doped yttrium aluminum garnet (Er,Yb:YAG) ceramics with various Yb contents from 5% to 25% were prepared by the solid-state reaction and the vacuum-sintering technique. The in-line transmittances of the mirror-polished ceramics exceed 80% from the visible band to the infrared band. The samples are very compact with few pores. The average grain size of the Er,Yb:YAG ceramic is about 15 μm. The upconversion luminescence spectra, infrared luminescence spectra and luminescence decay curves of the ceramics were observed and discussed. For 1%Er doped YAG ceramic, the best ion ratio of Yb3+ and Er3+ is around 15:1.  相似文献   

9.
《Ceramics International》2020,46(14):22270-22275
Via a facile solid reactive method, transparent Ln0.1La0.9GdZr2O7 (Ln = Nd, Yb) ceramics were successfully fabricated for the first time. The highest in-line transmittances of Nd:LaGdZr2O7 and Yb:LaGdZr2O7 ceramics reached 68% and 69%, respectively, at 1100 nm. The microstructure and crystal structure of Ln0.1La0.9GdZr2O7 transparent ceramics were fully investigated, indicating that the solid reactive technique is a good method of industrially fabricating Ln0.1La0.9GdZr2O7 transparent ceramics. The PL spectra demonstrated that Ln0.1La0.9GdZr2O7 ceramics can effectively be excited at 808 nm and 976 nm, which correlates with the widely applied output wavelengths of AlGaAs and InGaAs laser diodes. The luminescence decay curves were also studied, showing that the average fluorescence lifetimes of Nd0.1La0.9GdZr2O7 and Yb0.1La0.9GdZr2O7 transparent ceramics was 355 μs and 663 μs, respectively. Combined with its high temperature resistance and good mechanical strength, Ln0.1La0.9GdZr2O7 (Ln = Nd, Yb) transparent ceramics can have potential applications in Nd/Yb solid-state laser construction.  相似文献   

10.
In this study, a series of transparent ceramics with chemical composition of La1+xYb1+yZr2O7 (x, y = 0.1?0.5) were successfully prepared by vacuum sintering using combustion synthesized powders. The effects of excess contents on the phase composition, microstructure and in-line transmittance have been studied. The detailed results indicate that the in-line transmittance increases at first and then decreases as La content be elevated. It was also determined that the highest in-line transmittance of La1+xYb1+yZr2O7 (x, y = 0.1?0.5) ceramics is 84.1 % at 1100 nm when the excess amount of co-doped La-Yb is 30 %. Compared with stoichiometric LaYbZr2O7 ceramic, the nonstoichiometric La1+xYb1+yZr2O7 (x, y = 0.1?0.5) ceramics exhibit much higher transparency. In addition, the high excess amount of La, Yb and co-doped La-Yb also shows effects on the phase composition and crystal structure.  相似文献   

11.
Ultra-highly transparent ZrO2-doped Yb3+: Y2O3 ceramics were prepared by slip casting and vacuum pressureless sintering and the transmittance reached the highest value of 80.9% for the sample doped with 8.0 at% Yb3+. There are three main absorption peaks at 905, 950, and 976 nm, corresponding to the transition from the lowest level of field splitting of 2F7/2 crystal to every splitting energy levels of 2F5/2 crystal field. We analyzed the absorption and emission spectra of transparent Yb3+: Y2O3 from the energy level structure of Yb3+, and the transmission, absorption, and emission spectra were systematically studied. There are three main absorption peaks at 905, 950, and 976 nm and four emission peaks at 1076, 1031, 1013, and 977 nm, respectively. The emission peaks at 977 and 1013 nm broaden and vanish for 8.0 and 10.0 at% Yb3+-doped Y2O3, which may be related to the change of Y2O3 crystal field caused by high concentration.  相似文献   

12.
High-efficiency Yb:Y2O3 laser ceramics were fabricated using the vacuum-sintering plus hot isostatic pressing (HIP) without sintering additives. High-purity well-dispersed nanocrystalline Yb:Y2O3 powder was synthesized using a modified co-precipitation method in-house. The green bodies were first vacuum sintered at a temperature as low as 1430°C and then HIPed at 1450°C. Finally, the samples were air annealed at 800°C for 10 h. Although no sintering aids were used, full density of the samples with excellent optical homogeneity and an inline transmission of 80% at 400 nm could be obtained. Moreover, photodarkening phenomenon was not detected in the ceramics. Preliminary laser experiment with the fabricated ceramics in a two-mirror cavity has demonstrated 32 W continuous-wave (CW) output at ∼1077 nm with an optical-to-optical conversion efficiency of 58.2%. To the best of our knowledge, this is so far the highest CW output power and optical-to-optical conversion efficiency achieved with the Yb3+-doped sesquioxide ceramics in a simple two-mirror cavity.  相似文献   

13.
Transparent glass ceramics containing YF3 nano-crystals were fabricated by heat treatment of the SiO2–Al2O3–NaF–YF3–LnF3 (Ln = Er, Yb) glasses. X-ray diffraction and transmission electron microscopy analyses evidenced the homogeneous distribution of spherical YF3 nano-crystals sized 25–30 nm among the glassy matrix. Energy dispersive X-ray spectroscopy measurement, combined with the Stark splitting of the absorption and emission bands, verified the incorporation of Er3+ and Yb3+ ions into YF3 nano-crystals. The infrared to visible up-conversion emission of Er3+ intensified with the increasing of Yb3+ concentration, ascribing to the increase of the efficiency of non-radiative energy transfer from Yb3+ to Er3+ which exceeded 45% for the 0.5Er3+/1.0Yb3+ co-doped sample. The up-conversion luminescence at 545 and 660 nm were affirmed coming from two-photon excitation process.  相似文献   

14.
Nanoparticles of Yb, Er codoped calcium fluoride were obtained by a co-precipitation method. Scanning electron microscope (SEM) and X-ray powder diffraction (XRD) analysis showed that the obtained nanoparticles were single fluorite phase with grains size around 30–50 nm. Yb, Er:CaF2 transparent ceramics were fabricated by hot pressing (HP) the nanoparticles at a temperature of 800 °C in a vacuum environment. For a 2 mm thickness ceramic sample, the transmittance at 1200 nm reached about 83%. Microstructures were characterized using SEM analysis, and the average grain size was about 700 nm. Grain boundaries of the ceramic sample were clean and no impurities were detected. The absorption, upconversion and infrared emission spectra of transparent ceramic sample under 978 nm excitation were measured and discussed.  相似文献   

15.
The crystallization behavior of PbO–TiO2–B2O3–SiO2 glasses in the presence of Bi2O3 as a nucleating agent were studied utilizing XRD, DTA, SEM. The glass samples heat treated in the range of 557–630 °C for different soaking times, all developed PbTiO3 (PT) with perovskite structure. It was found that the addition of 0.5–1.0 mol% Bi2O3 resulted in the formation of homogenous, nano-structured glass ceramics with a mean crystallite size of 20–25 nm and PbTiO3 as the major crystalline phase. The dielectric constant and dissipation factors for the prepared glass ceramics were in ~140–400 and ~0.04–0.4 ranges respectively.  相似文献   

16.
The optical absorption spectra of undoped soda lime silicate glass together with two glasses doped with either (1 % nano Fe2O3 ) or with both (1 % Nano Fe2O3 + 5 % cement dust) have been measured from 200 to 2400 nm before and after gamma irradiation with a dose of 8 Mrad. The undoped glass reveals strong UV absorption with two distinct peaks which are attributed trace ferric iron ions present as impurity. Upon gamma irradiation , this base glass exhibits three peaks at 240,310 and 340 nm and the resolution of an induced broad visible band centered at 530 nm. The two doped glasses show an additional small visible band at about 440 nm and followed by a very broad band centered at 1050 nm. Upon gamma irradiation, the two doped samples reveal the decrease of the intensities of the spectrum. The two additional bands are related to ferric (Fe+3) ions to the band at (440 nm) while and the broad band at 1050 nm is due to ferrous iron (Fe+2) ions. The decrease of the intensities of the UV-visible spectrum upon irradiation can be related to of capturing freed electrons during irradiation . Infrared spectra of the glasses reveal repetitive characteristic absorption bands of silicate groups including bending modes of Si–O–Si or O–Si–O, symmetric stretching , antisymmetric stretching and some other peaks due to carbonate , molecular water , SiOH vibrations . Upon gamma irradiation, the IR spectra reveal a small change in the base spectrum while the IR spectra of the two doped glasses remain unchanged. The change of the IR spectrum of the base glass is related to suggested changes in the bond angles or bond lengths of the mid band structural units. The doped glasses show resistance to gamma irradiation because the nano Fe2O3 can capture released electrons and positive holes.  相似文献   

17.
Tb3+-doped germanate glass ceramics containing CaF2 nanocrystals were prepared by melt quenching method with subsequent heat treatment. Their microstructures were investigated by XRD and TEM techniques. Their optical properties were studied by the transmittance, the photoluminescence, and the X-ray excited luminescence (XEL). The luminescence intensity in the glass ceramics under 377 nm light and X-ray excitations is significantly enhanced. The maximum integrated XEL intensity of the glass ceramics is about 50% of that of the commercial Bi4Ge3O12 (BGO) scintillating crystal. The results indicate that Tb3+-doped germanate glass ceramic could be a promising scintillating material used in X-ray detection for slow event.  相似文献   

18.
Optical and FT Infrared spectroscopic measurements have been utilized to investigate and characterize binary bismuth silicate glass together with derived samples by replacements of parts of the Bi2O3 by SrO, BaO, or PbO. This study aims to justify and compare the spectral and shielding behavior of the studied glasses containing heavy metal ions towards gamma irradiation. The study also aims to measure or calculate the optical energy band gap of these glasses. The replacements of parts of Bi2O3 by SrO, BaO or PbO caused some changes within the optical and infrared absorption spectra due to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+, Pb2+ ions. The stability of both the optical and infrared spectra of the studied bismuth silicate glass and related samples towards gamma irradiation confirm some shielding behavior of the studied glasses and their suitability as radiation shielding candidates.  相似文献   

19.
Ytterbium doped lutetium oxide (Yb:Lu2O3) transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) of the powders synthesized by the co-precipitation method. The effects of calcination temperature on the composition and morphology of the powders were investigated. Fine and well dispersed 5?at% Yb:Lu2O3 powders with the mean particle size of 67?nm were obtained when calcined at 1100?°C for 4?h. Using the synthesized powders as starting material, we fabricated 5?at% Yb:Lu2O3 ceramics by pre-sintering at different temperatures combined with HIP post-treatment. The influence of pre-sintering temperature on the densities, microstructures and optical quality of the 5?at% Yb:Lu2O3 ceramics was studied. The ceramic sample pre-sintered at 1500?°C for 2?h with HIP post-treating at 1700?°C for 8?h has the highest in-line transmittance of 78.2% at 1100?nm and the average grain size of 2.6?µm. In addition, the absorption and emission cross sections of the 5?at% Yb:Lu2O3 ceramics were also calculated.  相似文献   

20.
Er, Yb:CaF2 nanoparticles with different Yb concentrations were synthesized by a coprecipitation method using nitrates as raw materials. X‐ray powder diffraction and transmission electron microscopy analysis showed that the nanoparticles were single fluorite phase and the nanoparticle size was found to decrease with increasing Yb concentrations. The obtained nanoparticles were hot‐pressed at 800°C under 30 MPa under vacuum environment to fabricate Er, Yb:CaF2 transparent ceramics. The influence of Yb ion concentrations on the optical transmission, microstructure, and luminescence properties of Er, Yb:CaF2 transparent ceramics were investigated. The addition of Yb ions was found effectively to reduce grain size and has a positive effect on improving the optical transmission of Er, Yb:CaF2 transparent ceramics. The highest transmittance in the near‐infrared spectral region of the Er, Yb:CaF2 transparent ceramic reached about 90%. The green, red, and near‐infrared emission intensities were found to increase with increasing Yb concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号