首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
陶瓷中空纤维透氧膜的制备与性能   总被引:3,自引:0,他引:3  
应用相转化法制备了La0.6Sr0.4Co0.2Fe0.8O3-α(LSCF)氧离子-电子混合传导陶瓷中空纤维膜, 该陶瓷中空纤维膜具有由多孔层和致密层组成的非对称结构. 经 1300℃的4h烧结后, 可得到致密的LSCF陶瓷中空纤维膜. 烧结后, LSCF粒度变大而其钙钛矿型晶相结构没有发生变化. LSCF中空纤维膜的透氧速率大大高于一般管式膜的氧透量.  相似文献   

2.
首先通过液相一锅合成法合成了Ce_(0.85)Sm_(0.15)O_(2-δ)(80%)-Sm_(0.6)Sr_(0.4)FeO_(3-δ)(20%)(SDC-SSF)萤石-钙钛矿双相透氧膜材料,进而采用盐酸刻蚀法制备了对称支撑型SDC-SSF双相透氧膜组件.SEM表征表明,通过酸刻蚀法可以一步制备出具有三层结构的对称支撑型SDC-SSF双相透氧膜片,其同时具有两层多孔载体与一层致密透氧功能层.XRD和SEM-EDS分析表明,通过盐酸刻蚀可以有效滤出SDC-SSF双相透氧膜中的SSF钙钛矿粒子,而SDC萤石相粒子却可完好保存从而自发形成双面多孔支撑体.透氧实验表明,基于盐酸刻蚀法制备对称支撑型透氧膜有利于提升SDC-SSF双相透氧膜的透氧量,其中刻蚀时间为28 h的SDC-SSF支撑型透氧膜在950℃时透氧量达到了0.49 mL/(cm~2·min),在SDC支撑体中浸渍铂催化剂后其透氧量进一步增加到0.81 mL/(cm~2·min).  相似文献   

3.
主要研究了BCFN非对称透氧膜的制备。采用了3种不同的方式制备BCFN多孔支撑体,并对其渗透性能和孔隙分布进行分析,发现采用干压成型方式制备的多孔支撑体的综合性能较其它两者更为优越。同时在用浸渍工艺制备致密膜层的过程中,通过调整浆料浓度和浸浆时间可以有效地控制膜层厚度和完整性。在浓度为20%(质量分数)的浆料中浸渍2min,可得到厚度约30μm、没有裂纹且表面平整的致密层。透氧实验的结果表明,相同条件下非对称膜的透氧率比致密膜提高了3倍左右且可以在850℃温度下长时间稳定工作。  相似文献   

4.
Pd/多孔TiAl合金基复合透氢膜的制备与性能   总被引:3,自引:0,他引:3  
用反应合成法制备了Al质量分数为35%的多孔TiAl合金,用约束烧结优化孔结构后多孔体的最大孔径约2-3μm,用化学镀方法制备了Pd/多孔TiAl合金基复合透氢膜,研究了复合透氢膜的性能.结果表明,制备出的复合透氢膜为纯净钯膜,表面膜层致密,厚度约为7 μm.在600℃以下,Pd/多孔TiAl合金复合膜具有良好的界面热稳定性.在500℃退火后复合膜具有优异的抗热震性能.退火后复合膜的氢分离性能为:在温度为500℃、压差为0.02-0.18 Mpa条件下,复合膜的氢气平均渗透系数F为5.1×10-6mol·m-2·s-1·Pa-1,H2/N2选择性为323-400.  相似文献   

5.
用共烧法制备了以(SrCo0.8Fe0.2O3-δ)0.85(SrSnO3)0.15(SCF-SS)多孔层为支撑体和SrCo0.8Fe0.2O3-δ(SCF)致密层为顶层膜的管状非对称透氧陶瓷膜;并对其相组成、微形貌以及氧分离性能进行了表征.研究发现: SCF和SCF-SS之间有较好的兼容性;当共烧温度为1150℃时,获得的非对称陶瓷膜的致密层厚度为50μm,支撑体的显气孔率为19.3%;900和800℃时,非对称膜样品(壁厚1.4mm,外径10.3mm,长度为4.1cm)的氧渗透率分别为1.91和1.01mL·cm-2·min-1,分别比同样几何尺寸的SCF对称膜样品高24%和36%.  相似文献   

6.
采用Ag-Cu钎料用于透氧膜与不锈钢支撑体之间的封接,研究了处理气氛对Ag-Cu钎料与透氧膜陶瓷反应界面的影响。结果显示,封接后Ag-Cu钎料与透氧膜连接界面在透氧膜一侧生成一层富Cu的厚度约为310μm的反应层。在800℃的Ar及Ar+10%O2中处理100h后反应层的厚度基本不变,表明Ag-Cu钎料与透氧膜的连接界面在长时间高温惰性气氛及高温氧化-惰性双重气氛中均具有良好的化学稳定性。  相似文献   

7.
通过溶胶-凝胶法制备了一种新型钾离子掺杂钙钛矿透氧膜材料K_(0.1)Sr_(0.9)Co_(0.8)Fe_(0.2)O_(3-δ)(KSCF),并系统考察了该透氧膜材料的透氧量、稳定性和速率控制步骤等.XRD表征显示,钾离子在钙钛矿A位掺杂量低于或等于10%不会改变KSCF立方钙钛矿结构.SEM分析显示,KSCF膜片在1 220℃焙烧可高度致密,并且KSCF长期放置仍然保持了高机械强度,不会出现类似SrCo_(0.8)Fe_(0.2)O_(3-δ)(SCF)材料的粉化解体.氧渗透实验结果表明,操作温度的升高、膜片厚度的降低以及吹扫气流速的增加均有利于膜片透氧量的提升,厚度为0.5 mm的KSCF膜片在950℃时的透氧量可达2.65 mL/(cm~2·min).对比实验表明,基于同样测试条件KSCF透氧膜的透氧量比SCF材料的透氧量更高.通过对KSCF膜片的速率控制步骤考察可以发现,当KSCF透氧膜膜片厚度低于0.7 mm时,其透氧过程为表面交换控制,当膜片厚度高于0.7 mm时,其透氧过程则会转化为体相扩散控制.  相似文献   

8.
混合导电体Y1-xLaxBa2Cu3O7-δ透氧膜的透氧性能研究   总被引:2,自引:0,他引:2  
用稳态法研究了具有类钙钛矿结构的Y1-xLaxBa2Cu3O7-δ(x=0.1、0.3、0.5、0.8和1.0)致密透氧膜在750~1000℃之间的透氧量.实验发现,透氧速率随着La替代Y的比例x的增加而增加;在大约875℃,氧空位的有序-无序转变导致透氧率有一个突然增加.透氧膜的两侧分别为He气氛和空气,当La完全替代Y时,厚1.0mm的LaBa2Cu3O7-δ膜的透氧量达到1.22μmol/s.cm2(1.64 mL/min.cm2).  相似文献   

9.
以生物形态多孔木材SiSiC陶瓷为载体,采用二次生长法在其孔道内壁合成了薄且连续、致密的ZSM-5分子筛膜.采用SEM、EDX、BET对多孔ZSM-5/SiSiC复合材料进行了表征.研究结果表明,采用静电组装技术,在木材陶瓷孔道内表面形成了单层、致密的分子筛晶种层.在100℃水热合成48h可在SiSiC陶瓷孔道内壁形成平均厚度为120nm的ZSM-5分子筛膜,且很好地复制了陶瓷载体的孔道结构,表现为连续致密的管状结构.制得的分子筛陶瓷复合材料的BET比表面积、微孔体积、ZSM-5分子筛负载量分别为17.8m2/g、0.00413cm3/g、2.36%.延长水热合成时间并不能增加膜的厚度,但ZSM-5分子筛膜表面的n(SiO2):n(AL2O3)会降低.  相似文献   

10.
真空阴极离子镀法制备Ti/TiN/Zr/ZrN多层膜   总被引:2,自引:0,他引:2  
过去,在不锈钢上沉积10μm以上多元多层软硬交替Ti/TiN/Zr/ZrN厚膜用以提高材料耐腐蚀性能的报道不多.采用阴极电弧离子镀结合脉冲偏压的方法制备了厚度选15 μm的Ti/TiN/Zr/ZrN多层膜.运用扫描电镜(SEM)、X射线衍射(XRD)、显微硬度计、划痕仪等考察了多层膜的形貌、厚度、相组成、硬度以及膜/基结合力,并利用电化学方法评价了基体、单层TiN薄膜以及多层膜的电化学腐蚀性能.结果表明:制备的Ti/TiN/Zr/ZrN多层膜界面明晰、结构致密、晶粒细小;膜/基结合力大于70 N,显微硬度达28 GPa;多层膜比单层TiN膜在提高1Cr11Ni2W2MOV基体的抗腐蚀能力方面具有更显著的作用.  相似文献   

11.
夏天  孟燮  骆婷  占忠亮 《无机材料学报》2019,34(10):1109-1114
对称固体氧化物燃料电池由于生产过程简单、成本低, 受到了研究者的广泛关注。然而较低的电极催化性能制约了其进一步的发展。本研究利用溶胶-凝胶法合成了一系列钙取代Sr2Fe1.5Mo0.5O6的钙钛矿材料(Sr2-xCaxFe1.5Mo0.5O6-δ, x=0, 0.2, 0.4, 0.6), 并研究了其作为对称固体氧化物燃料电池电极催化剂的性能。X射线衍射(XRD)测试表明所有样品在空气与氢气气氛中均能保持立方钙钛矿结构。而在程序升温还原(TPR)过程中, Ca 2+的掺入能有效降低还原温度, 提升其对析氧反应的催化活性。对称阳极电池在氢气气氛中的测试表明, 当Ca 2+的掺入量为0.6时电池极化阻抗最小。利用流延骨架与湿化学浸渍法制备了单电池SC0.6FMO|La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)| SC0.6FMO。以氢气作为燃料时, 单电池在800与650 ℃的最大功率密度分别为1.05与0.41 W?cm -2。以上结果表明Sr2-xCaxFe1.5Mo0.5O6-δ可以作为高效对称燃料电池的电极催化剂。  相似文献   

12.
氧空位在CO2光催化还原过程中往往发挥重要作用。本工作中, 用水热法合成了不同Bi掺杂量的二氧化铈光催化剂Ce1-xBixO2-δ, 其中Ce0.6Bi0.4O2-δ在Xe灯照射下表现出最高的光催化活性, 其CO产率为纯二氧化铈纳米棒的4.6倍。X射线衍射(XRD)分析表明固溶体保留了二氧化铈的萤石结构;紫外-可见漫反射(UV-Vis)光谱表明固溶体可见光吸收增强;X射线光电子能谱 (XPS)和拉曼光谱(Raman)分析表明, 掺杂后氧空位浓度明显提高。结合原位傅里叶变换红外光谱(in-situ FT-IR), 发现引入Bi提高了固溶体中氧空位的浓度, 并改变了CO2在催化剂表面上的吸附/活化行为, 光照下碳酸氢根、碳酸根、甲酸等中间产物明显增多, 从而增强了CO2光催化还原性能。  相似文献   

13.
采用干湿法纺丝技术制备Sr0.7Ba0.3Fe0.9Mo0.1O3-δ(SBFM)中空纤维支撑体, 以Nb2O5掺杂的SrCo0.8Fe0.2O3-δ (SCFNb)为膜材料, 采用旋转喷涂结合共烧结技术制备出担载型SCFNb/SBFM中空纤维氧渗透膜。借助于XRD、SEM、热膨胀分析、透氧及膜反应性能测试等手段, 分别对样品的晶相结构、膜微观结构、支撑体与膜层的烧结行为、膜的氧渗透通量及膜反应性能进行了研究。结果表明, 膜层与支撑体的晶相结构仍保持钙钛矿主体相。支撑体具有单一海绵孔/指状孔结构, 膜厚为5 μm且致密无缺陷, 膜层与支撑体结合良好。在900℃时, 氧渗透通量达到0.74 mL/(cm2·min)。850℃下甲烷部分氧化膜反应稳定操作超过200 h, 稳态下氧渗透通量为4.5 mL/(cm2·min)。研究表明, 担载型SCFNb/SBFM中空纤维氧渗透膜具有较高的氧渗透通量, 同时具有良好的膜反应稳定性。  相似文献   

14.
固态氧化物电解池(SOECs)因较高的能量转化效率在电化学还原CO2, 实现“碳中和”社会方面备受关注。与非对称电池结构相比, 对称SOECs的空气极和燃料极是相同或相近的材料, 可以减少界面种类, 改善电极与电解质的热膨胀匹配性, 简化电池的制备工艺。本研究合成了钙钛矿氧化物LaxSr2-xFe1.5Ni0.1Mo0.4O6-δ (LxSFNM, x=0.1、0.2、0.3、0.4), 作为固体氧化物电解池的对称电极用于评估纯CO2的电化学还原性能。掺入La3+可以有效提高反应催化活性, 其中L0.3SFNM为电极的电解池表现出最高的电化学性能, 800 ℃下, 在空气中的极化电阻为0.07 Ω∙cm2, 在50% CO-50% CO2中的极化电阻为0.62 Ω∙cm2。单电池L0.3SFNM@LSGM|LSGM|L0.3SFNM@LSGM在800 ℃和1.5 V电压下的电解电流密度为1.17 A∙cm-2, 在初始的50 h CO2短期电解测试中表现出优异的稳定性, 是一种理想的对称电极材料。  相似文献   

15.
生物质转化获得的生物质油可作为重要的制氢原料, 选取生物质油的主要成分乙酸作为模型化合物, 开展了乙酸自热重整催化制氢研究。采用共沉淀法制备了铁促进的类水滑石型钴基催化剂, 用于乙酸自热重整制氢体系, 并利用XRD、H2-TPR、N2低温物理吸脱附、TG等表征手段对催化剂进行表征测试。结果表明: 通过共沉淀法获得了以类水滑石结构为前驱体的(Co/Fe)xAl2CO3(OH)y·zH2O物相; 该前驱体经焙烧后获得的氧化物, 其主要物相为氧化铝担载的尖晶石结构, 包括CoAl2O4、Co3O4、Fe3O4、FeAl2O4等, BJH模型计算显示CoxAl3FeyOm±δ催化剂形成了介孔结构, 其中Co0.45Al3Fe0.4O5.55±δ孔径分布集中在4 nm左右, H2-TPR及XRD测试显示添加助剂Fe提升了催化剂还原度, 并在还原过程中形成了CoFe合金; 所获催化剂在乙酸自热重整反应中, 氢气产率达到 2.72 mol-H2/mol-HAc, 并保持稳定。表征结果还显示, 该催化剂在反应中结构稳定, CoFe合金稳定存在, 并未出现积炭, 表明催化剂具有抗氧化、抗积碳的特点。  相似文献   

16.
用湿化学方法合成了SrCo0.5FeO3.25(SC5FO),La0.15Sr0.85Ga0.3Fe0.7O3-δ(LSGFO)和Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCFO)三种透氧膜材料.采用H2-TPR、XRD和透氧测定,并结合膜反应等方法对它们的性质进行了比较研究.LSGFO与BSCFO具有较高的相结构稳定性,而SC5FO较差.LSGFO具有很高的抗还原能力,而BSCFO较差,但它具有优异的相结构可逆性.在air/He氧浓差梯度下,LSGFO和SC5FO导体膜的透氧量较低;BSCFO具有很高的氧渗透能力,850℃下,透氧量高达1.16[STP]mL/cm2·min.SC5FO膜反应器在POM反应开始不久,因为反应端膜表面的材料组成被反应气还原而出现严重的漏气现象,并最终导致实验失败.BSCFO与LSGFO膜反应器成功地应用到POM反应中,进行了长时间的稳定操作,稳态下透氧量分别高达11.5[STP]mL/cm2·min(875℃)与4.0[STP]mL/cm2·min(950℃).  相似文献   

17.
Cu2SnSe3基化合物作为一种绿色环保的新型热电材料, 近年受到了研究者的广泛关注。然而, 本征Cu2SnSe3基化合物载流子浓度低、电性能较差。为优化Cu2SnSe3化合物的电热输运性能, 本研究采用熔融、退火结合放电等离子烧结技术制备了一系列Cu2SnSe3-xTex (x=0~0.2)和Cu2Sn1-yInySe2.9Te0.1 (y=0.005~0.03)样品, 研究了Te固溶和In掺杂对材料电热输运性能的影响。Te在Cu2SnSe3-xTex (x=0~0.2)化合物中的固溶度为0.10, Te固溶显著增加了材料的载流子有效质量, 从本征Cu2SnSe3样品的0.2me增加到Cu2SnSe2.9Te0.1样品的0.45me, 显著提高了材料的功率因子, Cu2SnSe2.99Te0.01样品在300 K下获得最大功率因子为1.37 μW·cm-1·K-2。为了进一步提高材料的电传输性能, 本研究以Cu2SnSe2.9Te0.1为基体并选取In在Sn位掺杂。In掺杂将Cu2SnSe3基化合物的载流子浓度从5.96×1018 cm-3 (Cu2SnSe2.9Te0.1)显著提高到2.06×1020 cm-3 (Cu2Sn0.975In0.025Se2.9Te0.1)。调控载流子浓度促进了材料多价带参与电传输, 材料的电导率和载流子有效质量显著增加, 功率因子得到大幅度提升, 在473 K下Cu2Sn0.995In0.005Se2.9Te0.1化合物获得最大功率因子为5.69 μW·cm-1·K-2。由于电输运行性能显著提升和晶格热导率降低, Cu2Sn0.985In0.025Se2.9Te0.1样品在773 K下获得最大ZT为0.4, 较本征Cu2SnSe3样品提高了4倍。  相似文献   

18.
将CO2转化为高附加值的化学品是实现碳循环, 缓解能源危机和环境问题的有效途径之一。金属与半导体复合电极, 利用光电耦合技术为CO2转化提供了一种新思路。本研究通过电沉积的方法在碱刻蚀处理后的Si片上制备了双金属Bi、Zn共修饰的Si基光电阴极(BiZnx/Si), 用于CO2的光电催化还原。研究表明, 引入金属Bi和Zn能够改善光的吸收性能, 降低电化学阻抗, 提高电化学活性比表面积(ECSA)。其中, BiZn2/Si最优的光电极电化学比表面积可达0.15 mF·cm-2。除此之外, 研究发现双金属共同作用有助于增强电极对中间体*OCHO的吸附作用, 在-0.8 V(vs. RHE)电势下, 最优的光电阴极BiZn2/Si生成HCOOH的法拉第效率高达96.1%。更重要的是, 光电阴极BiZn2/Si的光电流强度在10 h内维持-13 mA·cm-2, 表现出良好的性能稳定性。  相似文献   

19.
本研究采用高温固相反应法合成了BaCe0.7Zr0.1Y0.2O3-d (BCZY7)质子导体氧化物, 对材料的物相结构和微观形貌进行表征和分析, 并将BCZY7作为固体氧化物燃料电池(SOFC)的电解质, 通过浸渍法和共烧结法成功制备了阳极支撑的NiO-BCZY7/BCZY7/La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)-BCZY7钮扣式电池。以氢气(含3vol% H2O)为燃料, 空气为氧化剂, 对电池的电化学性能进行测试。结果表明, 在600、550、500 ℃时, 电池的最高功率密度分别为203, 123, 92 mW×cm-2, 而传统(ZrO2)0.92(Y2O3)0.08基SOFC在600 ℃时通常只有几十毫瓦的单位面积输出, 质子导体电解质可以极大改善SOFC的中低温性能, 缓解SOFC工作温度高的问题。  相似文献   

20.
采用相转移纺织技术制备了致密的纯相钙钛矿BaCo0.4Fe0.4Zr0.2O3-δ(BCFZ)中空纤维透氧膜. 并用所制备的BCFZ中空纤维膜构建反应器对甲烷部分氧化制合成气进行研究. 结果表明: 在没有催化剂时, BCFZ膜材料本身对甲烷的活性较低, 甲烷转化率低于3%; 而加入Ni基催化剂后, 甲烷的转化率提高到93%以上、CO选择性为80%左右, 透氧量为11mL/min·cm2左右. 中空纤维膜反应器中初始阶段的活化只需要90min, 比片状膜反应器要快得多. 同时对在反应情况下, BCFZ中空纤维膜膜反应器的稳定性进行了初步的研究, 结果表明:BCFZ中空纤维膜在40h的操作中具有较好的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号