共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(16):18700-18710
A series of Al2O3/Y2O3-stabilized zirconia (Y-TZP) ceramic composites with different zirconia contents (5 and 40 vol% Y-TZP) and fabricated by different green processing techniques (a novel tape casting and conventional slip casting) were studied. The microstructure and mechanical properties of the composites were investigated systematically, by means of scanning electron microscopy, Vickers indentation, depth-sensing nanoindentation, and single-edge laser-notched beam (SELNB) techniques. The indentation fracture method was found to be unsuitable for fracture toughness determination in this work. Reliable values of fracture toughness were obtained by the SELNB method with an almost atomically sharp laser-machined initial notch. The microstructure and mechanical properties of the ceramic composites mainly depended on the Y-TZP content. No significant differences were induced by the choice of green processing technique. The contribution of residual stresses to fracture toughness in Al2O3/Y-TZP ceramic composites was investigated. To this end, a theoretical model was applied to estimate the increase in fracture toughness due to the measured residual stresses in the samples. It was found that in this case, residual stresses were not the main factor responsible for the toughening in Al2O3/Y-TZP composites. 相似文献
2.
Alumina (Al2O3) ceramic composites reinforced with graphene platelets (GPLs) were prepared using Spark Plasma Sintering. The effects of GPLs on the microstructure and mechanical properties of the Al2O3 based ceramic composites were investigated. The results show that GPLs are well dispersed in the ceramic matrix. However, overlapping of GPLs and porosity within ceramics are observed. The flexural strength and fracture toughness of the GPL-reinforced Al2O3 ceramic composites are significantly higher than that of monolithic Al2O3 samples. A 30.75% increase in flexural strength and a 27.20% increase in fracture toughness for the Al2O3ceramic composites have been achieved by adding GPLs. The toughening mechanisms, such as pull-out and crack deflection induced by GPLs are observed and discussed. 相似文献
3.
Xuye Wang Guopu Shi Qinggang Li Junyan Wu Hao Wu Liu Zhang Zhi Wang 《Ceramics International》2021,47(2):2280-2287
Owing to the good physicochemical compatibility and complementary mechanical properties of Ti3SiC2 and Al2O3, Ti3SiC2/Al2O3 composites are considered as ideal structural materials. However, TiC and TiSi2 typically coexist during the synthesis of Ti3SiC2/Al2O3 composites through an in-situ reaction, which adversely affects the mechanical properties of the resulting composites. In this study, Ti3SiC2/Al2O3 composites were prepared via in-situ hot pressing sintering at 1450 °C. Ge, which was used as a sintering aid, improved the purity and mechanical properties of the Ti3SiC2/Al2O3 composites. This is because Ge replaced some of the Si atoms to compensate the evaporation loss of Si to form Ti3(Si1-xGex)C2, which showed a crystal structure similar to that of Ti3SiC2. Furthermore, the molten Ge accelerated the diffusion reaction of the raw materials, increasing the overall density of the Ti3SiC2/Al2O3 composites. The optimum Ge amount for improving the mechanical properties of the composites was found to be 0.3 mol. The flexural strength, fracture toughness, and microhardness of the composite with the optimum Ge amount were 640.2 MPa, 6.57 MPa m1/2, and 16.21 GPa, respectively. The formation of Ti3(Si1-xGex)C2 was confirmed by carrying out X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy analyses. A model crystal structure of Ti3(Si1-xGex)C2 doped with 0.3 mol Ge was established by calculating the solid solubility of Ge. 相似文献
4.
《Ceramics International》2016,42(16):18053-18057
LZAS glass-ceramic composites toughened by 5, 10, 15 and 20 vol% 3-mol%-Y2O3-tetragonal-ZrO2-polycrystal (3Y-TZP) were prepared via pressureless sintering. Sinterability of composites was investigated in the temperature range of 520–720 °C using soaking time of 30 min. The sintered specimens were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. The results revealed that during sintering 3Y-TZP particles agglomerated between the glass powders and were not dissolved by glass-matrix. Mechanical properties of the sintered samples such as bending strength, Vickers micro-hardness and fracture toughness were also investigated. Measurements showed that the relative density of the samples decreased with increasing 3Y-TZP content. The composite containing 15 vol% 3Y-TZP has a best mechanical properties and it would be the optimum composition. It can be confirmed that crack deflection and transformation toughening are the dominant mechanisms for improving mechanical properties of the composites. 相似文献
5.
《Ceramics International》2020,46(3):2693-2702
To improve densification degree and reduce process time, microwave sintering and heat molding method were combined to prepared SiC matrix reinforced SiC (SiC/SiC) composite via polymer infiltration and pyrolysis process (PIP). The effects of heat molding pressures on the densification process, flexural behaviors and failure modes of the fabricated SiC/SiC were examined via scanning electron microscopy (SEM), computed tomography (CT) technique and mercury intrusion test. Results indicate that heat molding process promoted the densification degrees of SiC/SiC and adjusted the interphase bonding between SiC matrix and SiC fibers on the basis of rapid microwave heating. Owing to the appropriate interphase bonding, SiC/SiC composites fabricated under the heat molding pressure of 3 MPa had preferable flexural properties and failure mode. 相似文献
6.
《Ceramics International》2021,47(23):33259-33268
The demand for high-performance grinding wheels is gradually increasing due to rapid industrial development. Vitrified bond diamond composite is a versatile material for grinding wheels used in the backside grinding step of Si wafer production. However, the properties of the vitrified bond diamond composite are controlled by the characteristics of the diamond particles, the vitrified bond, and pores and are very complicated. The main objective of this study was to investigate the effects of SiO2–Na2O–B2O3–Al2O3–Li2O–K2O–CaO–MgO–ZrO2–TiO2–Bi2O3 glass powder on the sintering, microstructure, and mechanical properties of the vitrified bond diamond composite. The elemental distributions of the composite were analyzed using electron probe micro-analysis (EPMA) to clarify the diffusion behaviors of various elements during sintering.The results showed that the relative density and transverse rupture strength of the composite sintered at 620 °C were 91.7% and 126 MPa, respectively. After sintering at 680 °C, the glass powder used in this study exhibited a superior forming ability without an additional pore foaming agent. The relative density and transverse rupture strength of the composite decreased to 48.2% and 49 MPa, respectively. Moreover, the low sintering temperature of this glass powder protected the diamond particles from graphitization during sintering, as determined by X-ray diffraction and Raman spectrum. Furthermore, the EPMA results indicate that Na diffused and segregated at the interface between the diamond particles and vitrified bond, contributing to the improved bonding. The diamond particles can remain effectively bonded by the vitrified bond even after fracture. 相似文献
7.
《Journal of the European Ceramic Society》2020,40(15):5305-5315
In this study, three-dimensional silicon nitride fiber-reinforced silicon nitride matrix (3D Si3N4f/BN/Si3N4) composites with a boron nitride (BN) interphase were fabricated through chemical vapor infiltration. Through comparing the changes of microstructure, thermal residual stress, interface bonding state, and interface microstructure evolution of composites before and after heat treatment, the evolution of mechanical and dielectric properties of Si3N4f/BN/Si3N4 composites was analyzed. Flexural strength and fracture toughness of composites acquired the maximum values of 96 ± 5 MPa and 3.8 ± 0.1 MPa·m1/2, respectively, after heat treatment at 800 °C; however, these values were maintained at 83 ± 6 MPa and 3.1 ± 0.2 MPa·m1/2 after heat treatment at 1200 °C, respectively. The relatively low mechanical properties are mainly attributed to the strong interface bonding caused by interfacial diffusion of oxygen and subsequent interfacial reaction and generation of turbostratic BN interphase with relatively high fracture energy. Moreover, the Si3N4f/BN/Si3N4 composites also displayed moderate dielectric constant and dielectric loss fluctuating irregularly around 5.0 and 0.04 before and after heat treatment, respectively. They were mainly determined based on the intrinsic properties of materials system and complex microstructure of composites. 相似文献
8.
《Ceramics International》2023,49(16):26747-26758
WC-Si3N4 composite structural material with excellent mechanical properties is essential for achieving high-strength connections between WC and Si3N4. Proper powder mixing process can significantly improve the mechanical properties of sintered samples. This study investigates the effects of two different ball milling methods: (1) mixing WC powder, Si3N4 powder, and sintering aid powders and then ball milling for 24 h (BM24); and (2) ball milling WC powder, Si3N4 powder, and sintering aid powders separately for 12 h and then ball milling in same jar for 12 h (BM12 + 12), as well as WC content on sintering shrinkage behavior of mixed powders. Furthermore, the bonding between the layers of one-time sintered sample of the WC-Si3N4 composite structure was investigated. The results showed that the microstrains of powders prepared by BM24 mixing process were greater than those of the powders prepared by BM12 + 12 mixing process. Shrinkage displacements and shrinkage rates during sintering of BM12 + 12 powders were greater than those of BM24 powders to varying degrees. Moreover, sintering temperature at which shrinkage rate of composite powders reaches its maximum value gradually increases as WC content decreases, while maximum value of shrinkage rate gradually decreases. Additionally, mechanical properties of all BM12 + 12 samples were better than those of BM24 samples. WC-Si3N4 composite structure sample sintered with BM12 + 12 powders had a smooth transition between the layers without any defects. 相似文献
9.
《Journal of the European Ceramic Society》2017,37(15):4491-4496
Advanced silicon nitride (Si3N4) ceramics were fabricated using a mixture of Si3N4 and silicon (Si) powders via conventional processing and sintering method. These Si3N4 ceramics with sintering additives of ZrO2 + Gd2O3 + MgO were sintered at 1800 °C and 0.1 MPa in N2 atmosphere for 2 h. The effects of added Si content on density, phases, microstructure, flexural strength, and thermal conductivity of the sintered Si3N4 samples were investigated in this study. The results showed that with the increase of Si content added, the density of the samples decreased from 3.39 g/cm3 to 2.92 g/cm3 except for the sample without initial Si3N4 powder addition, while the thermal diffusivity of the samples decreased slightly. This study suggested that addition of Si powder, which varied from 0 to 100%, in the starting materials might provide a promising route to fabricate cost-effective Si3N4 ceramics with a good combination of mechanical and thermal properties. 相似文献
10.
Yingbin Hu Fuda Ning Weilong Cong Yuanchen Li Xinlin Wang Hui Wang 《Ceramics International》2018,44(3):2752-2760
Laser additive manufactured zirconia-alumina ceramic (ZrO2-Al2O3) parts demonstrate severe problems resulting from cracking and inhomogeneous material dispersion. To reduce these problems, we propose a novel ultrasonic vibration-assisted laser engineered net shaping (LENS) process for fabrication of bulk ZrO2-Al2O3 parts. Results showed that the initiation of cracks and the crack propagation were suppressed in the parts fabricated by LENS process with ultrasonic vibration. For the parts fabricated without ultrasonic vibration, the sizes of cracks decreased with the increase of laser power. Scanning electron microscope analyses proved that the introduction of ultrasonic vibration was beneficial for grain refinement and uniform material dispersion. Due to the suppressed cracking, refined grains, and homogenized material dispersion, the parts fabricated with ultrasonic vibration demonstrated better mechanical properties (including higher microhardness, higher wear resistance, and better compressive properties), compared with the parts fabricated without ultrasonic vibration. 相似文献
11.
《Ceramics International》2017,43(9):7106-7114
This study reports the effect of milling type on the microstructural, physical and mechanical properties of the W-Ni-ZrC-Y2O3 composites. Powder blends having the composition of W-1 wt% Ni-2 wt% ZrC-1 wt% Y2O3 were milled at room temperature for 12 h using a Spex™ 8000D Mixer/Mill or cryomilled in the presence of externally circulated liquid nitrogen for 10 min using a Spex™ 6870 Freezer/Mill or sequentially milled at room temperature and cryogenic condition. Then, powders were compacted in a hydraulic press under a uniaxial pressure of 400 MPa and green bodies were sintered at 1400 °C for 1 h under Ar/H2 atmosphere. Phase and microstructural characterization of the milled powders and sintered samples were performed using X-ray diffractometer (XRD), TOPAS software, scanning electron microscope/energy dispersive spectrometer (SEM/EDS), X-ray fluorescence (XRF) spectrometer and particle size analyzer (PSA). Archimedes density and Vickers microhardness measurements, and sliding wear tests were also conducted on the sintered samples. The results showed that sequential milling enables the lowest average particle size (214.90 nm) and it is effective in inhibiting W grain coarsening during sintering. The cryomilled and sintered composite yielded a lower hardness value (5.80±0.23 GPa) and higher wear volume loss value (149.42 µm3) than that of the sintered sample after room temperature milling (6.66±0.39 GPa; 102.50 µm3). However, the sequentially milled and sintered sample had the highest relative density and microhardness values of 95.09% and 7.16±0.59 GPa and the lowest wear volume loss value of 66.0 µm3. 相似文献
12.
Kristoffer Krnel Diletta Sciti Alida Bellosi 《Journal of the European Ceramic Society》2003,23(16):3135-3146
The effects of long term oxidation on the microstructural modification and on the electrical resistivity and mechanical strength of an AlN–SiC–MoSi2 electroconductive ceramic composite are presented. The microstructure of the pressureless sintered composite is described and the oxidation behaviour is discussed. The formation of protective mullite layer at temperatures above 1000 °C provides good oxidation resistance for use at higher temperatures. At temperatures below 1000 °C, the AlN/SiC matrix disables the “pesting” phenomena and strength degradation, despite the fact that at these temperatures MoSi2 oxidizes rapidly. The surface modification induced by oxidation on AlN–SiC–MoSi2 composites does not affect the mechanical strength, while the electrical conductivity strongly decreases. 相似文献
13.
《Ceramics International》2017,43(8):5887-5895
Reaction bonded B4C-SiC composites were prepared by infiltrating silicon melt into porous B4C-SiC green preforms at 1500 °C in vacuum. The porous green preform was obtained from a mixture of polycarbosilane (PCS) and particle size graded B4C after pre-sintering at 1600 °C. For the first time, PCS was used to adjust the phase composition and microstructure of the reaction bonded boron carbide composites. It is indicated that the addition of PCS and its content has a significant influence on the microstructure as well as the mechanical properties of the subsequent reaction bonded B4C-SiC composites. For the B4C-SiC composite with 5 wt% PCS added, a flexural strength of 319±12 MPa, and an elastic modulus of 402±18 GPa can be achieved, which is 23% and 15% higher than those of the composite without PCS addition, respectively. While, with the higher content of PCS addition, the mechanical properties of the composites are decreased drastically due to the large amount of residual Si agglomeration in the composites. The reaction mechanisms as well as their microstructure evolution processes correlated with the mechanical properties of the reaction bonded B4C-SiC composites are further discussed in our work. 相似文献
14.
Cong Lei Hongxiang Zhai Zhenying Huang Wenqiang Hu Leping Cai Siyu Chen Wenbo Yu Yang Zhou 《Ceramics International》2019,45(3):2932-2939
The co-continuous TiCx/Cu-Cu4Ti composites were prepared by infiltrating melting Cu into TiC0.5 porous preforms. TiC0.5 porous preforms were firstly synthesized by in-situ solid reaction process using powder Ti and carbon black as the starting materials, PVB as shaping and pore-forming agent. The prepared TiC0.5 preforms showed 3D-connected visible pores characterized with two classes of sizes, i.e. intergranular pores with size of 10–30?µm and intracrystalline pores with 2–3?µm. Microstructure and phase compositions of the composites were detected by scanning electron microscopy (SEM) equipped with EDS and X-ray diffraction (XRD). Metal region of the composites contained Cu as well as a new phase Cu4Ti, which was formed by reaction of Cu and TiC0.5. Composites prepared by this method had a compact structure and strong interface. Meanwhile, metal phase and ceramic phase maintained a co-continuous structure in three dimensions. Cu-Cu4Ti entered into the TiCx ceramic particles like root structure during the infiltration process. Flexural strength, fracture toughness and Vickers hardness of the composites reached 948.20?±?124.04?MPa, 12.62?±?0.37?MN?m?3/2 and 606.4?±?36.7 respectively when content of TiCx was 71.22?vol%. 相似文献
15.
Tae-Young Cho Rohit Malik Young-Wook Kim Kwang Joo Kim 《Journal of the European Ceramic Society》2018,38(9):3064-3072
Highly conductive SiC-Ti2CN composites were fabricated from β-SiC and TiN powders with 10?vol% Y2O3-AlN additives via pressureless sintering. The effect of initial TiN content on the microstructure, and electrical and mechanical properties of the SiC-Ti2CN composites was investigated. It was found that all specimens could be sintered to ≥98% of the theoretical density. The electrical resistivity of the SiC-Ti2CN composites decreased with increasing initial TiN content. The SiC-Ti2CN composites prepared from 25?vol% TiN showed the highest electrical conductivity (~1163 (Ω?cm)?1) for any pressureless sintered SiC ceramics thus far. The high electrical conductivity of the composites was attributed to the in situ-synthesis of an electrically conductive Ti2CN phase and the growth of N-doped SiC grains during pressureless sintering. The flexural strength, fracture toughness, and Vickers hardness of the composite fabricated with 25?vol% TiN were 430?MPa, 4.9?MPa?m1/2, and 23.1?GPa, respectively, at room temperature. 相似文献
16.
To maintain the bioactivity and to improve the mechanical properties of titania, both pure titania ceramics and titania–yttria-stabilized tetragonal zirconia (Y-TZP) composites with 5, 10, and 15 vol.%Y-TZP were prepared via a sol–gel precipitation method. A titania precursor (titanium butoxide) was mixed with a submicron-sized Y-TZP powder, followed by hydrolysis-condensation reactions, green compact forming, and sintering in air at 1200–1350 °C. It was found that the addition of Y-TZP resulted in reduced rutile titania grain size from 13 to 3 μm. The Y-TZP tetragonal phase also resulted in improved mechanical properties of the titania–Y-TZP composites. For instance, the titania–15 vol.%Y-TZP composite had a hardness value of 983 kg/mm2, a bending strength of 160 MPa, and a fracture toughness of 3.79 MPa m0.5. While the addition of Y-TZP increased the mechanical properties, it also decreased the bioactivity of the composites. 相似文献
17.
Hyun Kyu Jung Chang Hee Kim A-Ra Hong Seung Han Lee Tae Cheol Kim Ho Seong Jang Dong Hun Kim 《Ceramics International》2019,45(8):9846-9851
Functional materials exhibiting magnetic and luminescent properties have been recognized as an emerging class of materials with great potential in advanced applications. Herein, properties of multifunctional ceramic composites consisting of two garnets, luminescent cerium-doped Y3Al5O12 (Ce:YAG) and magnetic Y3Fe5O12 (YIG), are reported. On increasing the sintering temperature, both the photoluminescence and saturation magnetization of the Ce:YAG-YIG composites decreased gradually because of the interdiffusion of trivalent ions such as Al3+ and Fe3+. At a constant sintering temperature of 1100?°C, the YIG contents in the composites increased, thereby causing their luminescent properties to degrade and the saturation magnetizations to increase. For application to electronics, Ce:YAG-YIG composite thin films were integrated on quartz substrates by sputtering the ceramic target. The composite thin films exhibited both magnetic and luminescent properties after annealing. These techniques facilitate the incorporation of multifunctional nanocomposites into various devices. 相似文献
18.
19.
《Journal of the European Ceramic Society》2023,43(8):3216-3227
The goal of this study is to investigate the properties of yttrium hydride materials in relation to the microstructure, especially its homogeneity. High-throughput nanoindentation mapping was used to evaluate hardness distribution. Raman spectral imaging demonstrated its sensitivity to the presence of YH2 and impurities. Raman peak position maps were correlated with residual stress in the specimens. Electron backscatter diffraction mapping provided phase distributions with correlation to high-energy X-ray diffraction analysis. The experimental mapping data were combined and analyzed using unsupervised machine learning cluster procedures. The machine learning analysis revealed that yttrium hydride specimens contained a major δ-YH2 − x phase component and minor α-Y and δ-YH2 − x components with significant residual stress. The minor phase fraction decreased with increasing nominal H/Y ratio, which affected the nanoindentation and Vickers hardness. The multimodal mapping procedures described herein affect developing important microstructure–property relationships, as well as correlations in heterogeneity and mechanical properties. 相似文献
20.
《Ceramics International》2020,46(10):16151-16156
Silicon carbide (SiC) particles were utilized to improve the mechanical, thermal and anti-ablative properties of carbon/phenolic (C/Ph) composites. SiC–C/Ph composites were fabricated with different weight percentage of SiC by vacuum impregnation method. The mechanical and thermal properties were characterized by compression tests, thermal conductivity tests, and thermogravimetric analysis; meanwhile, ablation resistance was investigated using plasma wind tunnel tests and scanning electron microscopy. Experimental results showed that 5 wt% SiC modified C/Ph composites owned the optimum properties. Moreover, introducing SiC particles could result in an obvious decrease of compression strength, but an increase of thermal stability, thermal conductivity and anti-ablative performance. Notably, the ablation rate reached its the lowest point at 5% the SiC content in resin matrix composites. 相似文献