首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The incorporation of a thermally insulating secondary phase can significantly increase the interfacial thermal resistance attributed to its low intrinsic thermal conductivity and the creation of multiple phonon scattering interfaces between adjacent SiC particles. The newly developed porous SiC-33 wt% SiO2 composites with SiO2 as a thermally insulating secondary phase exhibited a very low thermal conductivity (0.047 Wm−1 K−1, 72.4 % porous), which is an order of magnitude lower than the previously reported lowest thermal conductivity (0.14 Wm−1 K−1, 76.3 % porous) for powder processed porous SiC ceramics and is even lower than the thermal conductivity (0.060 Wm−1 K−1, 87.9% porous) of SiO2 aerogel. The porous SiC-(16–73 wt%) SiO2 composites processed from nano β-SiC and a 40 wt% carbon template exhibited a hierarchical (meso-/macro-porous) pore structure that transformed to a trimodal (micro-/meso-/macro-porous) porous structure when polysiloxane was added and sintering was performed at 600–1000 °C in air.  相似文献   

2.
《Ceramics International》2023,49(8):12348-12359
Current work pursues generating controlled bimodal microstructure by plasma spraying of micrometer-sized Al2O3 and nanostructured spray-dried agglomerate with reinforcement of 20 wt% of 8 mol % yttria stabilized zirconia (8YSZ) and 4 wt% carbon nanotube (CNT) as potential thermal barrier coating (TBC) on the Inconel 718 substrate. Composite coatings exhibit bimodal microstructure of: (i) fully melted and resolidified microstructured region (MR), and (ii) partially melted and solid state sintered nanostructured regions (NR). Reinforcement with 8YSZ has led to an increase in hardness from ∼12.8 GPa (for μ-Al2O3) to ∼13.9 GPa in MR of reinforced Al2O3-YSZ composite. Further, with the addition of CNT in Al2O3-8YSZ reinforced composite, hardness of MR has remained similar ∼13.9 GPa (8YSZ reinforced) and ∼13.5 GPa (8YSZ-CNT reinforced), which is attributed to acquiescent nature and non-metallurgical bonding of CNT with MR. Indentation fracture toughness increased from 3.4 MPam0.5 (for μ-Al2O3) to a maximum of 5.4 MPam0.5 (8YSZ- CNT reinforced) showing ∼57.7% improvement, which is due to crack termination at NR, retention of t-ZrO2 (∼3.3 vol%) crack bridging, and CNT pull-out toughening mechanisms. Modified fractal models affirmed that the introduction of bimodal microstructure (NR) i.e., nanometer-sized- Al2O3, nanostructured 8YSZ and CNTs in the μ-Al2O3 (MR) contributes ∼44.6% and ∼72% towards fracture toughness enhancement for A8Y and A8YC coatings. An enhanced contribution of nanostructured phases in toughening microstructured Al2O3 matrix (in plasma sprayed A8YC coating) is established via modified fractal model affirming crack deflection and termination for potential TBC applications.  相似文献   

3.
The thermal and electrical properties of newly developed additive free SiC ceramics processed at a temperature as low as 1850 °C (RHP0) and SiC ceramics with 0.79 vol.% Y2O3-Sc2O3 additives (RHP79) were investigated and compared with those of the chemically vapor-deposited SiC (CVD-SiC) reference material. The additive free RHP0 showed a very high thermal conductivity, as high as 164 Wm−1 K−1, and a low electrical resistivity of 1.2 × 10−1 Ω cm at room temperature (RT), which are the highest thermal conductivity and the lowest electrical resistivity yet seen in sintered SiC ceramics processed at ≤1900 °C. The thermal conductivity and electrical resistivity values of RHP79 were 117 Wm−1 K−1 and 9.5 × 10−2 Ω cm, respectively. The thermal and electrical conductivities of CVD-SiC parallel to the direction of growth were ∼324 Wm−1 K−1 and ∼5 × 10−4Ω−1 cm−1 at RT, respectively.  相似文献   

4.
Zirconia doped with yttrium, widely known as yttria-stabilized zirconia (YSZ), has found recent applications in advanced electronic and energy devices, particularly when deposited in thin film form by atomic layer deposition (ALD). Although ample studies reported the thermal conductivity of YSZ films and coatings, these data were typically limited to Y2O3 concentrations around 8 mol% and thicknesses greater than 1 μm, which were primarily targeted for thermal barrier coating applications. Here, we present the first experimental report of the thermal conductivity of YSZ thin films (∼50 nm), deposited by plasma-enhanced ALD (PEALD), with variable Y2O3 content (0–36.9 mol%). Time-domain thermoreflectance measures the effective thermal conductivity of the film and its interfaces, independently confirmed with frequency-domain thermoreflectance. The effective thermal conductivity decreases from 1.85 to 1.22 W m−1 K−1 with increasing Y2O3 doping concentration from 0 to 7.7 mol%, predominantly due to increased phonon scattering by oxygen vacancies, and exhibits relatively weak concentration dependence above 7.7 mol%. The effective thermal conductivities of our PEALD YSZ films are higher by ∼15%–128% than those reported previously for thermal ALD YSZ films with similar composition. We attribute this to the relatively larger grain sizes (∼23–27 nm) of our films.  相似文献   

5.
The thermomechanical behavior of micro/nano-alumina (Al2O3) ceramics reinforced with 1-5 wt.% of acid-treated oil fly ash (OFA) was investigated. Composites were sintered using spark plasma sintering (SPS) technique at a temperature of 1400°C by applying a constant uniaxial pressure of 50 MPa. It was evaluated that the fracture toughness of micro- and nanosized composites improved in contrast with the monolithic alumina. Highest fracture toughness value of 4.85 MPam1/2 was measured for the nanosized composite reinforced with 5 wt.% OFA. The thermal conductivity of the composites (nano-/microsized) decreased with the increase in temperature. However, the addition of OFA (1-5 wt.%) in nanosized alumina enhanced the thermal conductivity at an evaluated temperature. Furthermore, a minimum thermal expansion value of 6.17 ppm*K−1 was measured for nanosized Al2O3/5 wt.% OFA composite. Microstructural characterization of Al2O3-OFA composites was done by x-ray diffraction and Raman spectroscopy. Oil fly ash particles were seen to be well dispersed within the alumina matrix. Moreover, the comparative analysis of the nano-/microsized Al2O3/OFA composites shows that the mechanical and thermal properties were improved in nanosized alumina composites.  相似文献   

6.
The effects of nitride (AlN, BN, TiN) addition on the electrical, thermal, and mechanical properties of porous SiC-nitride composites were investigated within a porosity range of 40–74 %. The electrical conductivity was predominantly controlled by chemistry rather than porosity, whereas the thermal conductivity was more susceptible to changes in porosity. These results suggest that the electrical conductivity of porous SiC ceramics can be tuned independently from the thermal conductivity by nitride addition. At constant thermal conductivity (∼5 Wm−1 K-1), the electrical conductivity of the baseline specimen (6.3 × 10-3 Ω-1 cm-1) could be: (1) increased by an order of magnitude (8.3 × 10-2 Ω-1 cm-1) by adding AlN and (2) decreased by an order of magnitude (7.0 × 10-4 Ω-1 cm-1) by adding BN. Typical electrical conductivity and thermal conductivity values of the porous SiC-10 vol% TiN composite were 5.3 × 10-1 Ω-1 cm-1 and ∼14.0 Wm−1 K-1, respectively, at 51 % porosity.  相似文献   

7.
《Ceramics International》2020,46(11):19241-19247
A high temperature stable ceramic photonic structure is demonstrated with low thermal conductivity and suppressed external radiative heat transfer. The structure is based on a disordered arrangement of yttria-stabilized zirconia (YSZ) microparticles, called photonic glass (PhG). The prepared YSZ-PhG film exhibits low thermal conductivity of 0.03 Wm−1K−1 comparable to that of the air. The small point contacts of the adjacent YSZ particles are the main cause of such low thermal conductivity. After annealing at 1400 °C for 5 h, the solid thermal conductivity increased to 0.3 Wm−1K−1 at room temperature due to the thermally induced neck formation, associated with an increased contact area between adjacent particles. This thermal conductivity is still much lower than that of conventional YSZ thermal barrier coatings (TBCs) with approximately 1 Wm−1K−1. At the same time, the PhG structure is an efficient scatterer for thermal radiation in the wavelength range between 1 and 6 μm. In an only 100 μm thick structure an average reflection of 84% was obtained. At 1400 °C, the effective thermal conductivity is 0.2 Wm−1K−1. The presented structure is applicable to other oxides with even lower bulk thermal conductivity and can be considered for future TBCs.  相似文献   

8.
Dense silicon carbide/graphene nanoplatelets (GNPs) and silicon carbide/graphene oxide (GO) composites with 1 vol.% equimolar Y2O3–Sc2O3 sintering additives were sintered at 2000 °C in nitrogen atmosphere by rapid hot-pressing technique. The sintered composites were further annealed in gas pressure sintering (GPS) furnace at 1800 °C for 6 h in overpressure of nitrogen (3 MPa). The effects of types and amount of graphene, orientation of graphene sheets, as well as the influence of annealing on microstructure and functional properties of prepared composites were investigated. SiC-graphene composite materials exhibit anisotropic electrical as well as thermal conductivity due to the alignment of graphene platelets as a consequence of applied high uniaxial pressure (50 MPa) during sintering. The electrical conductivity of annealed sample with 10 wt.% of GNPs oriented parallel to the measuring direction increased significantly up to 118 S·cm−1. Similarly, the thermal conductivity of composites was very sensitive to the orientation of GNPs. In direction perpendicular to the GNPs the thermal conductivity decreased with increasing amount of graphene from 180 W·m−1 K−1 to 70 W·m−1 K−1, mainly due to the scattering of phonons on the graphene – SiC interface. In parallel direction to GNPs the thermal conductivity varied from 130 W·m−1 K−1 up to 238 W·m−1 K−1 for composites with 1 wt.% of GO and 5 wt.% of GNPs after annealing. In this case both the microstructure and composition of SiC matrix and the good thermal conductivity of GNPs improved the thermal conductivity of composites.  相似文献   

9.
A variety of combinations of Y2O3 and MgO were used as additives in preparing Si3N4 ceramics by the sintering of reaction-bonded silicon nitride (SRBSN) method. By varying the amount of Y2O3 in the range of 0-5 mol% and that of MgO in the range of 0-8 mol%, the effects of Y2O3 and MgO additives on nitridation and sintering behaviors as well as thermal conductivity were studied. It was found that appropriate amount and combination of Y2O3 and MgO additives were essential for attaining full densification and achieving high thermal conductivity. The sample doped with 2.5 mol% of Y2O3 and 5 mol% of MgO attained a thermal conductivity of 128 Wm−1K−1 when sintered at 1900°C for 6 hours, and the sample doped with 2 mol% of Y2O3 and 4 mol% of MgO achieved a thermal conductivity of 156 Wm−1K−1 when sintered for 24 hours.  相似文献   

10.
Thermal insulation applications have long required materials with low thermal conductivity, and one example is yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ) as thermal barrier coatings used in gas turbine engines. Although porosity has been a route to the low thermal conductivity of YSZ coatings, nonporous and conformal coating of YSZ thin films with low thermal conductivity may find a great impact on various thermal insulation applications in nanostructured materials and nanoscale devices. Here, we report on measurements of the thermal conductivity of atomic layer deposition-grown, nonporous YSZ thin films of thickness down to 35 nm using time-domain thermoreflectance. We find that the measured thermal conductivities are 1.35–1.5 W m−1 K−1 and do not strongly vary with film thickness. Without any reduction in thermal conductivity associated with porosity, the conductivities we report approach the minimum, amorphous limit, 1.25 W m−1 K−1, predicted by the minimum thermal conductivity model.  相似文献   

11.
SiC ceramics sintered with yttria were successfully joined without an interlayer by conventional hot pressing at lower temperatures (2000–2050 °C) compared to those of the sintering temperatures (2050–2200 °C). The joined SiC ceramics sintered with 2000 ppm Y2O3 showed almost the same thermal conductivity (˜198 Wm−1 K−1), fracture toughness (3.7 ± 0.2 MPa m1/2), and hardness (23.4 ± 0.8 GPa) as those of the base material, as well as excellent flexural strength (449 MPa). In contrast, the joined SiC ceramics sintered with 4 wt% Y2O3 showed very high thermal conductivity (˜204 Wm−1 K−1) and excellent flexural strength (˜505 MPa). Approximately 16–22% decreases in strength compared to those of the base SC materials were observed in both joined ceramics, due to the segregation of liquid phase at the interface. This issue might be overcome by preparing well-polished and highly flat surfaces before joining.  相似文献   

12.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

13.
《Ceramics International》2019,45(16):19679-19683
Nano-sized monoclinic Y4Al2O9 was produced by sol-gel process as a novel potential candidate material for thermal barrier coatings. The thermal behavior, structural evolution of the products and the morphological characteristics of the compacted bodies were investigated by Thermogravimetric analysis and differential scanning calorimeter (TG-DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Field emission scanning electron microscopy (FESEM). Qualitative analyses indicate that monoclinic Y4Al2O9 was formed at about 1000 °C, and exhibited good phase stability throughout the annealing temperature ranging from 1000 °C to 1400 °C. The thermophysical properties of Y4Al2O9 ceramics were also evaluated compared with 8YSZ and La2Zr2O7. The determined activation energy of crystal growth is about 72.71 ± 0.31 kJ mol−1. Meanwhile, Y4Al2O9 represents low thermal conductivity (1.71 W m−1 K−1), moderate thermal expansion coefficient (8.73 × 10−6 K−1), and high sintering-resistance ability. Such results reveal that nano-sized Y4Al2O9 is favorable for the application of TBCs.  相似文献   

14.
The thermal conductivities/diffusivities of YSZ/Al2O3 composites have been investigated by a laser flash technique. The thermal conductivity of the composite increases with an increase in the Al2O3 volume fraction, and it can be fitted well to the Maxwell theoretical model. The consistency of the thermal conductivities of the composites with the predicted values indicates the absence of obvious interfacial thermal resistances in the composites. The negligible thermal resistance effect from the YSZ and Al2O3 grain boundaries is due to the much lower phonon mean free path compared with the grain size in the composite. The low Kapitza resistance of the YSZ/Al2O3 interface is discussed in terms of the “clean” and coherent nature of the YSZ/Al2O3 interface, together with the small difference between the elastic properties of YSZ and Al2O3.  相似文献   

15.
《Ceramics International》2023,49(10):15413-15421
In this work, Yb3Al5O12 (YbAG) garnet, as a new material for environment barrier coating (EBC) application, was synthesized and prepared by atmospheric plasma spraying (APS). The phases and microstructures of the coatings were characterized by XRD, EDS and SEM, respectively. The thermal stability was measured by TG-DSC. The mechanical and thermal-physical properties, including Vickers hardness (Hv), fracture toughness (KIC), Young's modulus (E), thermal conductivity (κ) and coefficient of thermal expansion (CTE) were also measured. The results showed that the as-sprayed coating was mainly composed of crystalline Yb3Al5O12 and amorphous phase which crystallized at around 917 °C. Moreover, it has a hardness of 6.81 ± 0.23 GPa, fracture toughness of 1.61 ± 0.18 MPa m1/2, as well as low thermal conductivity (0.82–1.37 W/m·K from RT-1000 °C) and an average coefficient of thermal expansion (CTE) (∼6.3 × 10−6 K−1 from RT to 660 °C). In addition, the thermal shock and water-vapor corrosion behaviors of the Yb3Al5O12-EBC systems on the SiCf/SiC substrates were investigated and their failure mechanisms were analyzed in details. The Yb3Al5O12 coating has an average thermal shock lifetime of 72 ± 10 cycles as well as an excellent resistance to steam. These combined properties indicated that the Yb3Al5O12 coating might be a potential EBC material. Both the thermal shock failure and the steam recession of the Yb3Al5O12-EBC systems are primarily associated with the CTE mismatch stress.  相似文献   

16.
《Ceramics International》2020,46(13):21367-21377
In this work, Gd2Hf2O7 ceramics were synthesized and investigated as a potential thermal barrier coating (TBC) material. The phase composition, microstructure and associated thermal properties of Gd2Hf2O7 ceramics were characterized systematically. Results show that the thermal conductivity of Gd2Hf2O7 ceramics is 1.40 Wm−1K−1 at 1200 °C, ~25% lower than that of 8 wt% yttria partially stabilized zirconia (8YSZ). Gd2Hf2O7 ceramics also present large thermal expansion coefficients, which decrease from 12.0 × 10−6 K−1 to 11.3 × 10−6 K−1 (300–1200 °C). Besides, the hot corrosion behaviors of Gd2Hf2O7 ceramics exposed to V2O5 and Na2SO4 + V2O5 salts at temperatures of 900–1200 °C were discussed in great detail. We pay much attention on the corrosion process, corrosion mechanism and corrosion damage of Gd2Hf2O7 ceramics subjected to molten V2O5 and Na2SO4 + V2O5 salts at different temperatures.  相似文献   

17.
Graphene/ceramic composites are proposed by directly depositing graphene on the insulating Al2O3 particles by chemical vapor deposition without any metal catalysts. Carbothermic reduction occurring at the Al2O3 surface is vital during the initial stage of graphene nucleation and the graphene sheet can connect with neighboring sheets to completely cover Al2O3 particles. The quality and layer number of graphene on Al2O3 can be finely tailored by changing the growth temperature and gas ratio. Graphene coated Al2O3 (G-Al2O3) composites are used as effective fillers of stearic acid (SA) to increase the thermal transport property. By the optimization of the layer number of graphene, size of Al2O3 particles and ratio of G-Al2O3/SA in a quantitative, their thermal conductivities significantly increase up to 11 folds from 0.15 to 1.65 W m−1 K−1. The great improvement is attributed to the high thermal transfer performance of graphene and excellent wettability between graphene and SA. When the G-Al2O3/SA composites with the graphene coated porous Al2O3 foam, the thermal conductivity further reaches to 2.39 W m−1 K−1, and the corresponding latent heat is 38 J g−1. It demonstrates the potential applications of graphene in thermal transport and thermal energy storage devices.  相似文献   

18.
About 6-8 wt% yttria-stabilized zirconia (YSZ) is the industry standard material for thermal barrier coatings (TBC). However, it cannot meet the long-term requirements for advanced engines due to the phase transformation and sintering issues above 1200°C. In this study, we have developed a magnetoplumbite-type SrAl12O19 coating fabricated by atmospheric plasma spray, which shows potential capability to be operated above 1200°C. SrAl12O19 coating exhibits large concentrations of cracks and pores (~26% porosity) after 1000 hours heat treatment at 1300°C, while the total porosity of YSZ coatings progressively decreases from the initial value of ~18% to ~5%. Due to the contribution of porous microstructure, an ultralow thermal conductivity (~1.36 W m−1 K−1) can be maintained for SrAl12O19 coating even after 1000 hours aging at 1300°C, which is far lower than that of the YSZ coating (~1.98 W m−1 K−1). In thermal cyclic fatigue test, the SrAl12O19/YSZ double-ceramic-layer coating undertakes a thermal cycling lifetime of ~512 cycles, which is not only much longer than its single-layer counterpart (~163 cycles), but also superior to that of YSZ coating (~392 cycles). These preliminary results suggest that SrAl12O19 might be a promising alternative TBC material to YSZ for applications above 1200°C.  相似文献   

19.
This study addressed novel multiphase composite of Al2O3/Ti/TiC that exhibited enhanced fracture toughness and room-temperature crack-healing function. Al2O3/Ti/TiC composites were fabricated through hot-press sintering of CNT, TiH2, and Al2O3 mixed powders, where the TiC was in-situ formed by reaction of CNT and Ti. The effects of CNT (TiC) content on mechanical and electrical properties were studied. Electrochemical anodization process at room temperature was attempted to these composites to heal cracks introduced in the surface of composites. Results indicated that added CNT was invisible while metal Ti and reaction product TiC coexisted in all samples. The reaction between CNT and Ti[O] representing dissolved active oxygen into Ti was considered as the main formation route of TiC. The toughening mechanism was demonstrated as crack deflection and bridging due to the presence of TiC. In spite of the increase in electrical resistivity because of the higher resistivity of TiC than Ti, the present Al2O3/Ti/TiC composites still remain high enough electrical conductivity (8.0 × 10−3 Ωcm ~1.8 × 10−2 Ωcm for 0-2 vol% CNT addition) which could be regarded as conductors; it allowed to heal cracks in the composites by electrochemical anodization that formed titanium dioxide phase at room temperature. It was found that crack-healing ability in 1 vol% CNT added composite exhibited higher strength recovery ratio of 95.6% to the crack-free sample than that of Al2O3/Ti composite (the recovery ratio of 89.6%). After crack-healing process, mechanical strength of samples increased by 52.3% compared to cracked composites. It was concluded that the formed TiC could contribute to the appropriate electrical conduction as well as interface strengthening in the Al2O3/Ti composites. Furthermore, it was firstly speculated that the TiC could be electrochemically anodized to form an oxide like Ti metal. These characteristics enable Al2O3/Ti/TiC composites as the crack-healing materials at room temperature.  相似文献   

20.
《Polymer Composites》2017,38(10):2221-2227
Graphene nanoplatelets (GNPs) have attracted considerable attention in the field of thermal management materials due to their unique structure and exceptional thermal conductive properties. In this work, we demonstrate a significant synergistic effect of GNPs, alumina (Al2O3), and magnesia (MgO) in improving the thermal conductivity of polycarbonate/acrylonitrile‐butadiene‐styrene polymer alloy (PC/ABS) composites. The thermal conductivity of the composites prepared through partial replacement of Al2O3 and MgO with GNPs could increase dramatically compared with that without GNPs. The maximum thermal conductivity of the composite is 3.11 W mK−1 at total mass fraction of 70% with 0.5 wt% GNPs loading. It increases 60% compared with that without GNPs (1.95 W mK−1). The synergistic effect results from the compact packing structure formed by Al2O3/MgO and the bridging of GNPs with Al2O3/MgO, thus promoting the formation of effective thermal conduction pathways within PC/ABS matrix. More importantly, together with the intrinsically high thermal conductivity of GNPs, boosted and effective pathways for phonon transport can be created, thus decrease the thermal resistance at the interface between fillers and PC/ABS matrix and increase the thermal conductivity of composites. POLYM. COMPOS., 38:2221–2227, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号