首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2017,43(7):5715-5722
In this study, we report the electrical conductivity and thermal properties of Al2O3-SiC-CNT hybrid nanocomposites processed via ball milling (BM) and spark plasma sintering (SPS). The initial powders and consolidated samples were characterized using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), respectively. A multifunction calibrator and a high-resolution digital multimeter were used to measure the electrical conductivity. The thermal properties were measured using a thermal constants analyser. The SiC and CNT-reinforced alumina hybrid nanocomposites exhibited a significant increase in their room-temperature electrical conductivity, which made them suitable for electrical discharge machining. The Al2O3-5SiC-2CNTs had a high electrical conductivity value of 8.85 S/m compared to a low value of 6.87×10−10 S/m for the monolithic alumina. The addition of SiC and CNTs to alumina decreased its room-temperature thermal properties. The increase in temperature resulted in a decrease in the thermal conductivity and thermal diffusivity but an increase in the specific heat of the monolithic alumina and the hybrid nanocomposites. These properties were correlated with the microstructure, and possible transport mechanisms were discussed.  相似文献   

2.
《Ceramics International》2015,41(8):9813-9822
The effects of hot-pressing (HP) and spark plasma sintering (SPS) methods on the grain size, microstructural features, and mechanical behaviour of graphene nanoplatelet/carbon nanotubes (GNTs) reinforced Al2O3 nanocomposites were comprehensively studied. Different graphene nanoplatelet to carbon nanotube ratios were selected as the overall reinforcement content of composites prepared using HP and SPS. Highly densified samples (>98%) were obtained at 1650 °C under 40 MPa in Ar atmosphere, with dwell times of 1 h and 10 min for HP and SPS respectively. Both types of sample showed a mixture of inter- and transgranular fracture behaviour. A 50% grain size reduction was observed for samples prepared by HP compared to SPS samples. Both types of samples achieved a high flexural strength and fracture toughness of >400 MPa and 5.5 MPa m1/2, whilst SPS samples peaked at relatively lower GNT contents than those for the HP samples. Based on analyses of the morphology, grain sizes and fracture mode, similar toughening mechanisms for both types of sample were observed, involving the complex characteristics of the combined GNT fillers.  相似文献   

3.
《Ceramics International》2023,49(13):21737-21744
The current distribution structure of the thermal conductivity (TC) enhancements in UO2 matrix can be divided into three categories: dispersed structure, continuous structure and oriented structure. This paper develops a new semi-continuous structure to improve the TC of UO2. Ti3SiC2 is selected as the enhancement in this paper due to its excellent irradiation resistance and high TC at elevated temperature. The semi-continuous structure of Ti3SiC2 is formed through a simple centrifugal spheroidization of UO2 and a followed powder mixing process. Both the theoretical prediction and experimental results indicate the semi-continuous structure has a close TC enhancing efficiency to the continuous structure. Meanwhile, the semi-continuous structure has the advantages of simplifying the fabrication process and can be applied to more kinds of enhancements compared to the continuous structure. The TC of Ti3SiC2/UO2 is remarkably improved at elevated temperature compared with pure UO2, which is beneficial to the fuel safety.  相似文献   

4.
《Ceramics International》2020,46(3):3224-3235
Heavily Nb-doped strontium titanate (SrTi1-xNbxO3) nanoparticles and SrTi1-xNbxO3/TiO2 nanocomposite powders were synthesized by a sol-gel method. Structural characterization of the obtained powders was performed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV–visible spectroscopy. The powders were densified by spark plasma sintering (SPS) method up to 98% of the relative density. Upon composite production, the thermal conductivity of the un-doped samples was effectively decreased for SrTiO3/TiO2 nanocpmposite from 12 to 8 W/m.K. On the other hand, thermal conductivity of the Nb-doped SrTi0.8Nb0.2O3/TiO2 composite was decreased by about 50% down to 3.4 W/m.K in comparison to SrTiO3/TiO2 due to the phonon scattering at the point defects originated from both Nb atoms and TiO2 nanoparticles.  相似文献   

5.
《Ceramics International》2017,43(18):16084-16093
Carbon nanotube (CNT) possesses eminent mechanical properties and has been widely utilized to toughen bioceramics. Major challenges associated with CNT-reinforced bioceramics include the inhomogeneous dispersion of CNTs and the insufficient interfacial strength between the two phases. To address such issues, this research describes the first use of silica-coated CNT (S-CNT) core-shell structures to reinforce bioceramics using hydroxyapatite (HA) as a representative matrix. HA-based composites with 0.1–2 wt% S-CNT are sintered by spark plasma sintering to investigate their mechanical and biological properties. It is found that when 1 wt% raw CNT (R-CNT) is added, very limited increases in fracture toughness (KIC) is observed. By contrast, the incorporation of 1 wt% S-CNT increased the KIC of HA by 101.7%. This is attributed to more homogeneously dispersed fillers and stronger interfacial strengths. MG63 cells cultured on the 1 wt% S-CNT/HA pellets are found to proliferate faster and possess significantly higher alkaline phosphatase activities than those grown on the HA compacts reinforced with 1 wt% R-CNT, probably by virtue of the released Si ions from the SiO2 shell. Therefore, the S-CNT core-shell structures can improve both mechanical and biological properties of HA more effectively than the conventionally used R-CNTs. The current study also presents a novel and effective approach to the enhancement of many other biomedical and structural materials through S-CNT incorporation.  相似文献   

6.
《Ceramics International》2023,49(10):15442-15450
Carbon nanotubes (CNTs) are widely used in ceramic-matrix composites (CMC) as a filler. An individual carbon nanotube exhibits extremely high thermal conductivity, however, the influence of CNTs on the thermal conductivity of CMCs is moderate. In contrast, even a small quantity of CNTs significantly increases the electrical conductivity of CMCs. The present paper studies this contradictory influence for ZrO2-CNTs composites with 3, 5, 10 and 20 vol% multi-wall carbon nanotubes (MWCNTs). Their thermal and electrical conductivity was studied by the laser flash method and electrochemical impedance spectroscopy. The analysis reveals that the moderate influence of MWCNTs on the thermal conductivity of composites originates from the similar thermal conductivity of MWCNTs in a bundle and zirconia. On the other hand, the substantial difference in the electrical conductivity of MWCNTs and zirconia leads to an exponential increase in the electrical conductivity of the ZrO2-CNTs composite even with small additions of nanotubes.  相似文献   

7.
《Ceramics International》2020,46(6):7634-7641
In this paper, the microstructure and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 (LAGP) solid electrolytes prepared by spark plasma sintering (SPS) were investigated by XRD, SEM, TEM and EIS, respectively. The results showed that as the sintering temperature was increased, both the relative density and the ionic conductivity of the sintered LAGP samples first increased and then decreased, achieving a maximum value of 97% and 2.12 × 10−4 S cm−1 simultaneously at 700 °C. At the same time, the crystallinity of the sintered samples was improved, while a few impurity phases, such as AlPO4 and GeO2, appeared in the samples. It was also found that carbon contamination and oxycarbide gas was be brought in during SPS. Carbon contamination could produce an extra grain boundary impedance to the samples and could be removed by annealing at 500 °C in an air atmosphere. Oxycarbide gas could affect the relative density of the sintered LAGP samples and could be mitigated by choosing a suitable SPS process. Moreover, the shear modulus of the sintered LAGP was measured to be 49.6 GPa, which exceeded the minimum value of 8.5 GPa that was necessary to suppress Li dendrite growth.  相似文献   

8.
《Ceramics International》2019,45(10):12757-12763
Dense silicon nitride (Si3N4) ceramics were prepared using Y2O3 and MgF2 as sintering aids by spark plasma sintering (SPS) at 1650 °C for 5 min and post-sintering annealing at 1900 °C for 4 h. Effects of MgF2 contents on densification, phase transformation, microstructure, mechanical properties, and thermal conductivity of the Si3N4 ceramics before and after heat treatment were investigated. Results indicated that the initial temperature of liquid phase was effectively decreased, whereas phase transformation was improved as increasing the content of MgF2. For optimized mechanical properties and thermal conductivity of Si3N4, optimum value for MgF2 content existed. Sample with 3 mol.% Y2O3 and 2 mol.% MgF2 obtained optimum flexural strength, fracture toughness and thermal conductivity (857 MPa, 7.4 MPa m1/2 and 76 W m−1 K1, respectively). It was observed that excessive MgF2 reduced the performance of the ceramic, which was caused by the presence of excessive volatiles.  相似文献   

9.
Young Seok Song 《Carbon》2006,44(4):710-717
Effective thermal conductivity of the polymeric composites filled with carbon nanotubes (CNTs) is predicted by using the asymptotic expansion homogenization technique (AEH), which makes it possible to localize and homogenize a heterogeneous medium. In the present study, CNT embedded epoxy composites are taken into account as the heterogeneous system. The representative volume element (RVE) employed in the homogenization process is constructed by assuming that the CNTs are dispersed homogeneously in the polymer matrix. It is presumed that the RVE contains a single CNT and that there is no direct interaction between neighboring CNTs. The dispersion state of CNTs in the composites is morphologically characterized by the field emission scanning electronic microscope (FESEM). In order to consider the orientation state of CNTs, the bounding approach is adopted by using the orientation tensor. It is found that the numerically homogenized thermal conductivity is higher than that obtained by the analytic model. Predicted conductivities are also compared with experimental results as well as analytic results. The homogenization technique yields the effective thermal conductivity accordant with experimental results. In the case that a heterogeneous material has anisotropic properties or geometrical complexity, the homogenization technique is an efficient method to obtain averaged material properties equivalent to those of the real heterogeneous medium.  相似文献   

10.
《Ceramics International》2023,49(5):7987-7995
Monolithic Al2O3 and Al2O3-graphene-SiC hybrid composites were prepared by spark plasma sintering (SPS) under vacuum atmosphere. The results show that the hybrid composites were almost completely dense (>97%). SiC content has a significant effect on the microstructure of the composites. With the increase of SiC content, the average grain size of alumina decreased gradually. The addition of SiC to alumina changed fracture mode from inter-granular fracture to mixed fracture mode of inter-granular fracture and trans-granular fracture. The Al2O3-0.4 wt%graphene-5 wt% SiC hybrid composite has the highest bending strength and hardness, which were 57% and 19.22% higher than those of the monolithic alumina, respectively. The room temperature (RT) thermal conductivity of the monolithic Al2O3 (25.5 W/m·K) was the highest. The thermal conductivity and thermal diffusivity coefficient of the composites decreased with the increase in temperature, while the specific heat of monolithic alumina and composites increased with the increase in temperature and additives. These properties were related to the microstructure of materials and the possible transport mechanisms were discussed.  相似文献   

11.
Multi–walled carbon nanotube (MWCNT) reinforced titanium matrix composites were synthesized using a spark plasma sintering method at a low sintering temperature of 550 °C. The effects of the weight fraction of MWCNTs on the microstructures and the mechanical and thermal properties of the composites were investigated. No reaction products were detected in the composites, indicating that the MWCNTs in the composites maintained their structural integrity after sintering, and thus, because of their advantageous properties, could reinforce the titanium matrix. As a result, the compressive strength of the composite containing 0.4 wt.% MWCNTs reached 1106 MPa, which was an increase of 61.5% compared to that of pure titanium under at the same conditions. In addition, the results revealed that compressive strength of the bulk compacts increased initially and then decreased with an increase in weight fraction of MWCNTs. However, compressive strain of the sintered composites continued to fall at a slow rate. The microhardness and thermal diffusivity of the composites rose steadily with an increasing content of MWCNTs. When the weight fraction of MWCNTs in the composites exceeded 0.8%, the compressive strength of the composites declined significantly due to the increasing aggregation of the MWCNTs.  相似文献   

12.
Due to the extraordinary electronic, mechanical, chemical, thermal, magnetic, and optical properties, carbon nanotube (CNT), an excellent one-dimensional nano-material, has been considered as a new filler for polymer, metal, and ceramic matrix composites with the main purpose of improving their mechanical performance, fracture behavior, and functional features. In the silicon carbide (SiC) ceramic field, there are many CNT reinforced SiC ceramic matrix composites and CNT/SiC hybrid structures, which have been investigated successfully using various of methods. This paper reviews the current status of researches and describes all different routes for effectively dispersing CNTs throughout SiC ceramic matrix, densifying composites, and synthesizing hybrid structures.  相似文献   

13.
Dense alumina composites with different carbon nanotube content were prepared by colloidal processing and consolidated by Spark Plasma Sintering (SPS). Single-wall carbon nanotubes (SWNTs) were distributed at grain boundaries and also into agglomerates homogeneously dispersed. Carrying out Vickers hardness tests on the cross-section surfaces instead of top (or bottom) surfaces has shown a noticeable increase in the reliability of the hardness measurements. This improvement has been mainly attributed to the different morphology of carbon nanotube agglomerates, which however does not seem to affect the Vickers hardness value. Composites with lower SWNT content maintain the Vickers hardness of monolithic alumina, whereas it significantly decreases for the rest of compositions. The decreasing trend with increasing SWNT content has been explained by the presence of higher SWNT quantities at grain boundaries. Based on the results obtained, a method for optimizing Vickers hardness tests performance on SWNT/Al2O3 composites sintered by SPS is proposed.  相似文献   

14.
《Ceramics International》2019,45(13):15928-15933
Carbon nanotubes due to their structural and mechanical properties are good candidates as the second phase to improve the mechanical properties of alumina-based ceramics. In the present study, the effects of single wall and multi-wall carbon nanotubes on structural and mechanical properties of alumina were investigated. SWCNTs and MWCNTs were dispersed in alumina powder via a conventional method using 1 wt % PVA water solution as media. Sintering process for two different composite powders, alumina-2 wt. % SWCNTs and alumina 2 wt % MWCNTs was performed by spark plasma sintering technique at 1500 °C and 20 MPa for 10 min. Results showed that the presence of CNTs in alumina caused a considerable amount of porosity in final bodies. SEM images of fracture surfaces revealed the agglomeration of SWCNTs which played a dominant role in the deterioration of mechanical properties. MWCNTs reinforced alumina obtained higher Vickers hardness and bending strength values (12.91 GPa and 291 MPa, respectively) compared to that of SWCNTs (9.18 GPa and 276 MPa, respectively), due to sever agglomerate of SWCNTs throughout sintered composites. Typical load-displacement (P/h) curves were obtained from bending strength test and discussed. It was concluded that the addition of MWCNTs to alumina represented better densification and mechanical properties compared to SWCNTs.  相似文献   

15.
《应用陶瓷进展》2013,112(7):394-398
Abstract

Abstract

Highly densified Al2O3-TiC-Ti3SiC2 composites were fabricated by spark plasma sintering technique and subsequently characterised. From fracture surface observation, it is found that Al2O3 is 0·2-0·4?μm, TiC is 1-1·5?μm and Ti3SiC2 is 1·5-5?μm in grain size. With the increase in Ti3SiC2 volume contents, Vickers hardness of the composites decreases because of the low hardness of monolithic Ti3SiC2. The fracture toughness rises remarkably when the contents of Ti3SiC2 increase, which is attributed to the pullout and microplastic deformation of Ti3SiC2 grains. At the same time, the flexural strength of the composites shows a considerable improvement as well. The electrical conductivity rises significantly as the Ti3SiC2 contents increase because of the formation of Ti3SiC2 network and the increase in conductive phase contents.  相似文献   

16.
《Ceramics International》2016,42(16):17990-17996
Spark Plasma Sintering (SPS) has attracted a lot of interest in recent years owing to its ability to enable the densification of a broad range of materials in a very short processing time. It is well documented in the literature that the very high heating rates that can be applied with this technology can lead to the apparition of large thermal gradients in the tool and thus affect the homogeneity of the compact.In the present study, the influence of the compact thermal and electrical properties on the thermal gradients was studied. Al2O3, AlN and TiC powders were used to produce series of Al2O3-TiC and AlN-TiC composites (0, 25, 50, 75, 100 vol%TiC) showing different electrical and thermal conductivities. Two pyrometers were used in order to observe and measure the thermal gradients and the percolation of the current during sintering at a high heating rate and without insulation.Electrical conductivity measurements were carried out on samples presenting different relative densities. This samples were obtained through interrupted sintering cycles at temperatures below and above the identified percolation threshold temperature.It was shown that high thermal gradients can appear during SPS depending on the processing parameters (dimensions of the die and heating rate) but also on the composition of the compact (proportion of conductive phase) and on its density.  相似文献   

17.
With the view to improve the densification behaviour and mechanical properties of ZrB2-SiC ceramics, three synthesis routes were investigated for the production of ZrB2, prior to the fabrication of ZrB2-20 vol. % SiC via spark plasma sintering (SPS). Two borothermal reduction routes, modified with a water-washing stage (BRW) and partial solid solution of Ti (BRS), were utilised, alongside a boro/carbothermal mechanism (BRCR) were utilised to synthesise ZrB2, as a precursor material for the production of ZrB2-SiC. It was determined that reduction in the primary ZrB2 particle size, alongside a diminished oxygen content, was capable of improving densification. ZrB2-SiC ceramics, with ZrB2 derived from BRW synthesis, exhibited a favorable combination of high relative density (98.6%), promoting a marked increase in Vickers hardness (21.4 ± 1.7 GPa) and improved thermal conductivity (68.7 W·m-1K-1).  相似文献   

18.
A study on the mechanical and thermo-mechanical properties of carbon nanotube (CNT) reinforced nanocomposites is presented in this article. Mori–Tanaka method is used for modeling the effective stiffness and coefficient of thermal expansion. Regression formulas were developed to describe the effects of CNT orientation, aspect ratio, and CNT volume fraction. Given the statistical distributions of CNT orientations and aspect ratios, the effective properties can be conveniently derived by numerical integration using these formulas.  相似文献   

19.
Nanostructured modification of polymers has opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential to realise electrically conductive polymers with improved or retaining mechanical performance. This study focuses on the evaluation of both, the electrical and thermal conductivity of nanoparticulate filled epoxy resins. We discuss the results with regard to the influence of the type of carbon nanotube (SWCNT, DWCNT and MWCNT), the relevance of surface-functionalisation (amino-functionalisation), the influence of filler content (wt% and vol%), the varying dispersibility, the aspect ratio and the specific surface area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号