首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ reinforcing elastomer composites based on Santoprene thermoplastic elastomer, a polymerized polyolefin compound of ethylene–propylene–diene monomer/polypropylene, and a thermotropic liquid crystalline polymer (TLCP), Rodrun LC3000, were prepared using a single‐screw extruder. The rheological behavior, morphology, mechanical, and thermal properties of the blends containing various LC3000 contents were investigated. All neat components and their blends exhibited shear thinning behavior. With increasing TLCP content, processability became easier because of the decrease in melt viscosity of the blends. Despite the viscosity ratio of dispersed phase to the matrix phase for the blend system is lower than 0.14, most of TLCP domains in the blends containing 5–10 wt % LC3000 appeared as droplets. At 20 wt % LC3000 or more, the domain size of TLCP became larger because of the coalescence of liquid TLCP threads that occurred during extrusion. The addition of LC3000 into the elastomer matrix enhanced the initial tensile modulus considerably whereas the extensibility of the blends remarkably decreased with addition of high TLCP level (>.20 wt %). The incorporation of LC3000 into Santoprene slightly improved the thermal resistance both in nitrogen and in air. Dynamic mechanical analysis results clearly showed an enhancement in dynamic moduli for the blends with 20–30 wt % LC3000. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Takuo Asami  Koh-hei Nitta 《Polymer》2004,45(15):5301-5306
The structural origin of rubber elasticity in the polyolefinic thermoplastic elastomers composed of isotactic polypropylene (iPP) matrix and ethylene-propylene-diene rubber (EPDM) domains was investigated using scanning and transmission electron microscopes under uniaxial deformation and the computational analysis by a three dimensional finite element method. The rubber domains were dominantly deformed and elongated by accompanying localized yielding in iPP region between neighboring EPDM domains perpendicular to the stretching direction. The iPP region between adjacent EPDM domains in the stretching direction remained undeformed, suggesting that the undeformed iPP region plays the role in connecting rubber domains.  相似文献   

3.
In situ‐reinforcing composites based on two elastomer matrices very different in melt viscosity, styrene–(ethylene butylene)–styrene triblock copolymer (Kraton G1650), and styrene–(ethylene propylene) diblock copolymer (Kraton G1701), and a thermotropic liquid crystalline polymer (TLCP), Rodrun LC3000, were prepared using a twin‐screw extruder. The isothermal decomposition behavior and dynamic mechanical properties of the extruded strands were investigated by means of thermogravimetry (TG) and dynamic mechanical analysis (DMA), respectively. No significant change in the shape of TG curves for the neat matrices and their LC3000‐containing blends was observed under isothermal heating in nitrogen. In air, G1650 and G1701 showed a single weight‐loss stage and rapid decomposition whereas their blends with 30 wt % LC3000 showed different profiles of weight loss depending on isothermal temperatures. The calculated kinetic parameters indicated that the thermal stability of the polymers is much higher in nitrogen than in air and suggested an enhancement of thermal resistance of the elastomer matrices by addition of TLCP. DMA results showed a great enhancement in dynamic moduli for the blend with 10 wt % LC3000 when compared with the neat matrix. The tan δ peaks corresponding to the elastic and hard phases in both matrices mostly shifted to the lower temperature with LC3000 loading. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 917–927, 2007  相似文献   

4.
以过氧化物为硫化剂,用动态硫化法制备了聚烯烃弹性体(POE)/聚丙烯(PP)热塑性弹性体,研究了硫化剂用量、填料种类和加工次数对体系力学性能的影响。结果表明,增加硫化剂用量可以提高体系的拉伸强度,降低拉伸永久变形和压缩永久变形。碳酸钙和滑石粉对POE/PP体系无明显增强作用,炭黑的增强作用较此二者明显一些,这三种填料加入后都会使体系的扯断伸长率降低而硬度增大。加入石蜡油会使体系的扯断伸长率和压缩永久变形增大、硬度和拉伸强度降低。加工次数对POE/PP体系的力学性能无明显影响,说明体系具有较好的重复加工性能。  相似文献   

5.
This paper focuses on the development of swellable thermoplastic elastomer alloys based on elastomeric powder, polypropylene, and superabsorbent polymer. The mechanical and swelling properties of the resulting materials were investigated at varying concentrations of the components and by compatiblization between the rubber particles of the elastomeric powder and the polypropylene phase using the peroxide 2,5‐dimethyl‐2,5di(t‐buthylperoxy)hexane as compatibilizer. The materials obtained could be processed by injection molding in the same way as thermoplastics. The mechanical and swelling properties of the materials could be controlled by shifting the concentrations of the components. The swelling properties in different swelling media were investigated. A maximum of 120% of the relative increase of mass was obtained using KOH solution. The positions of the SAP particles within the material were detected by a combined method of SEM and EDX scan. Elastomeric powder and thermoplastic build the matrix material, in which the SAP particles are embedded mechanically. A schematic illustration of the material structure was developed, and the liquid was suspected to be transported by diffusion into the material matrix as well as along the interface between SAP and the matrix material. The results obtained can be used for the design of improved sealing concepts, as they evidence a good method of using recycled elastomers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The dynamic mechanical properties in terms of the storage modulus E′, loss modulus E″, and the loss tangent δ has been studied for highly filled magnetic polymer composites. The effect of surface treatment on the relaxation spectra has been clearly elucidated and quantitative values indicating the extent of polymer–filler interactions have been given. Various models have been tested for describing the viscoelastic behavior of such highly filled systems. The Wiechert model using a single-arm with a Cole–Cole parameter has been shown to effectively fit the Argand diagram in the case of the present highly filled systems.  相似文献   

7.
In situ reinforcing composites based on two elastomer matrices very different in melt viscosity, styrene–(ethylene butylene)–styrene triblock copolymer (Kraton G1650) and styrene–(ethylene propylene) diblock copolymer (Kraton G1701), and a thermotropic liquid crystalline polymer (TLCP), Rodrun LC3000, were prepared using a twin‐screw extruder. The rheological behavior, morphology, mechanical and thermal properties of the blends containing various LC3000 contents were investigated. G1650 was found to have much higher shear viscosity than G1701. All neat components and their blends exhibited shear thinning behavior. Melt viscosity of the blends gradually decreased with increasing LC3000 contents. Despite a large difference in melt viscosity of the two matrices, the results showed that the fibrillar morphology was obtained for both as‐extruded strands of LC3000/G1650 and LC3000/G1701 with up to 30 wt % LC3000. At 40 wt % LC3000 or more, the lamellar structure was observed for both types of blends because of the coalescence of liquid TLCP threads that occurred during extrusion. The addition of LC3000 into both elastomer matrices enhanced the tensile modulus considerably whereas the extensibility remarkably decreased. The results obtained from thermogravimetric analysis suggested that an addition of LC3000 into both elastomer matrices improved the thermal resistance significantly in air, but not in nitrogen. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1610–1619, 2006  相似文献   

8.
动态硫化对聚烯烃热塑性弹性体力学性能的影响   总被引:1,自引:2,他引:1  
通过分析动态化过程中橡胶相硫化和相反转之间的关系,从粘弹性角度出发,提出用压敏模型来描述橡胶弹性对橡塑间界面结构全的影响,此模型讨论了硫化速度和剪切速度对界面和力学性能的影响。采用分步动态硫化法使弹性体的力学性能得到明显提高。  相似文献   

9.
The effects of short carbon fibers on static and dynamic properties of thermoplastic elastomeric blends of natural rubber (NR) and high density polyethylene (HDPE) have been studied. Both mechanical and dynamic properties are dependent on fiber concentration. The fiber aspect ratio ranges from 20 to 30. Adhesion between fiber and matrix is evident from the SEM photomicrographs of the failed composites and from variation of relative damping properties. Fiber orientation occurring during processing causes anisotropy in the physical properties. In composites with longitudinally oriented fibers, tensile failure occurs by both fiber pullout and breakage, while in composites with transversely oriented fibers, matrix failure dominates. The incorporation of fibers into the matrix lowers the tan δmax value, but no change in glass transition temperature is observed.  相似文献   

10.
We investigated thermal and mechanical properties of thermoplastic polyurethanes (TPUs) with the soft segment comprising of both polyisobutylene (PIB) and poly(tetramethylene)oxide (PTMO) diols. Thermal analysis reveals that the hard segment in all the TPUs investigated is completely amorphous. Significant mixing between the hard and soft segments was also observed. By adjusting the ratio between the hard and soft segments, the mechanical properties of these TPUs were tuned over a wide range, which are comparable to conventional polyether‐based TPUs. Constant stress creep and cyclic stress hysteresis analysis suggested a strong dependence of permanent deformation on hard segment content. The melt viscosity correlation with shear rate and shear stress follows a typical non‐Newtonian behavior, showing decrease in shear viscosity with increase in shear rate. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 891‐897, 2013  相似文献   

11.
To explore a potential method for improving the toughness of a polylactide (PLA), we used a thermoplastic polyurethane (TPU) elastomer with a high strength and toughness and biocompatibility to prepare PLA/TPU blends suitable for a wide range of applications of PLA as general‐purpose plastics. The structure and properties of the PLA/TPU blends were studied in terms of the mechanical and morphological properties. The results indicate that an obvious yield and neck formation was observed for the PLA/TPU blends; this indicated the transition of PLA from brittle fracture to ductile fracture. The elongation at break and notched impact strength for the PLA/20 wt %TPU blend reached 350% and 25 KJ/m2, respectively, without an obvious drop in the tensile strength. The blends were partially miscible systems because of the hydrogen bonding between the molecules of PLA and TPU. Spherical particles of TPU dispersed homogeneously in the PLA matrix, and the fracture surface presented much roughness. With increasing TPU content, the blends exhibited increasing tough failure. The J‐integral value of the PLA/TPU blend was much higher than that of the neat PLA; this indicated that the toughened blends had increasing crack initiation resistance and crack propagation resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Present work reports on electrical properties of polyurethane elastomer/polyaniline (PU/PANI-HCl) composite films under tensile deformation. Two types of surface-modified and one type of volume-modified composite of PU and PANI-HCl were prepared. Surface modification of PU film was performed by swelling the parent film in aniline followed by its contact with the acidified oxidant solution to polymerize aniline and form PANI-HCl distributed inside surface/subsurface layer of the film. Volume-modified PU was prepared by mixing of the polymer components in a joint solution and then solution casting. Nonlinear current-voltage characteristics were observed for surface-modified samples while linear ones were typical of volume-modified samples. Deformation of the polymer composites caused partially reversible decrease of their conductivity characteristics, which could be described mathematically with a power law function of the strain with an exponent being dependable on the type of PU modification. Such behavior was interpreted in terms of deformation of a fractal percolation network formed in the system during its formation and chemical synthesis.  相似文献   

13.
This work investigates the morphology, the thermal, and mechanical properties of technical fibers extracted from the Ampelodesmos mauritanicus (Diss) grass using a process that combines mechanical, mild chemical, and enzymatic steps. The structure and the thermal stability of Diss fibers make them suitable as a reinforcing filler in polymer composites, which was assessed by manufacturing biocomposites with improved stiffness and a tensile strength not degraded by Diss fibers when compared to those of a commodity polymer and a biodegradable one, namely polypropylene and poly(lactic acid). This work confirms that enzyme mixtures obtained from commercially available products of relatively low cost can represent a simple and environmentally friendly means to extract less common natural fibers. POLYM. ENG. SCI., 59:2418–2428, 2019. © 2019 Society of Plastics Engineers  相似文献   

14.
低硬度EPDM/PP热塑性弹性体力学性能的研究   总被引:1,自引:1,他引:1  
刘永  唐颂超  王庆海 《弹性体》2003,13(2):26-29
就不同参数的三元乙丙橡胶(EPDM)、酚醛树脂硫化剂用量和催化剂与活化剂质量比对三元乙丙橡胶/聚丙烯(EPDM/PP)热塑性弹性体的力学性能和交联密度的影响进行了研究,结果表明:选择END型高不饱和度、适中乙烯含量、高充油型EPDM是制备低硬度热塑性弹性体的较佳选择;当酚醛树脂用量5-7份,催化剂/活化剂质量比为0.12—0.2时,获得的弹性体综合力学性能最好;比较发现,自制的低硬度热塑性弹性体力学性能已接近或达到国外同类产品水平。  相似文献   

15.
Polystyrene/Styrene‐Ethylene‐Propylene‐Styrene/Vinyl Ester Resin (PS/SEPS/VER) blends used as matrix of ultra high molecular weight polyethylene (UHMWPE) fiber‐reinforced composites, which included both physical crosslinking points of thermoplastic resin SEPS and chemical crosslinking network of thermosetting resin PS/VER, were prepared by solution blending and hot‐molding. Morphology and mechanical properties of the PS/SEPS/VER composites were investigated in this work. The microstructure of PS/SEPS/VER composites observed by means of scanning electron microscopy (SEM) was correlated with mechanical properties. It is worth noting that, stiffness increased sharply with the addition of VER within a certain range. Impact properties verified the structure that the physical crosslinking points of SEPS were immersed in the chemical crosslinking network of PS/VER. Dynamic mechanical analysis revealed that, incorporation of VER changed the storage modulus and loss tangent. In brief, addition of VER had improved mechanical properties, thermal stability, and fluidity of the composites during processing, indicating a successful result for preparing resin matrix material with outstanding comprehensive performances. Analog map was presented to facilitate better understanding of the special structure of PS/SEPS/VER. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
MDI基热塑性聚酯型聚氨酯弹性体性能的研究   总被引:1,自引:0,他引:1  
以4,4′-苯基甲烷二异氰酸酯(MDI)、聚己二酸丁二醇酯二醇(PBA)、1,4-丁二醇(BDO)为原料,采用一步法合成热塑性聚氨酯弹性体(TPU)。在n(—NCO)/n(—OH)(R值)恒定条件下,研究了PBA相对分子质量、BDO添加量与TPU性能关系,并由红外光谱、热重、X射线衍射分别表征了TPU的结构、热性能和结晶特性。研究发现:R值、BDO量和MDI量恒定时,PBA的相对分子质量越高,TPU的拉伸强度、断裂伸长率均呈增加趋势;R值恒定,以相对分子质量3 000的PBA为原料,TPU的拉伸强度、断裂伸长率均随BDO添加量的增加而增加;TPU的热分解温度高于300℃,结晶特性显著。  相似文献   

17.
Adhesion between individual components and the mechanical properties of natural rubber (NR)-polypropylene (PP) thermoplastic elastomeric blends with reference to adhesion have been studied. The adhesion strength between the component phases was varied by incorporating a third component, namely ethylene propylene diene rubber (EPDM) or chlorinated polyethylene (CPE), and their effects on the mechanical properties were also studied. It was observed that the level of adhesion between NR and PP is improved by incorporating 20 parts of EPDM or CPE in NR. The mechanical properties of the blends are also improved for a particular composition. The enhancement in the strength properties and modulus of an NR:X:PP (where X is the third component) (70:10:30 or 70:20:30) blend is apparent when a correction due to the hard-phase contribution of the blend is made by taking the ratio of the strength of the composite to the strength of the hard phase or modulus of the blends. When the three-component blends were compared with a 90:30 blend of NR-PP, the role of adhesion played by EPDM or CPE in improving the strength and modulus could be demonstrated. In fact, there is a direct qualitative relationship between the adhesion and the mechanical properties in such composites. The stronger the adhesion, the greater the tensile strength and modulus. The higher adhesion strength is further reflected from the morphology of various blends. Separation of the phases during swelling and subsequent drying is restricted in the systems exhibiting higher adhesion strength between the components.  相似文献   

18.
研究了聚丙烯(PP)牌号、橡塑比、硫化体系和不同填料对丁苯橡胶/聚丙烯(SBR/PP)动态硫化热塑性弹性体力学性能的影响。研究结果表明:选用牌号为EPC-30R—H的PP与SBR共混,橡塑比为70/30(质量比),硫磺的用量为1.25份左右(或DCP的用量为1.5份左右),沉淀白炭黑用量为30份,而滑石粉用量为30份时,共混物的综合力学性能较好。  相似文献   

19.
Incorporation of hard clay causes improvement in most of the physical properties of zinc-sulfonated EPDM of high ethylene content. Zinc stearate reduces the melt viscosity of the clay-filled zinc-sulfonated EPDM during high-temperature processing, but does not adversely affect the physical properties at ambient temperatures. Studies include the measurement of physical properties, scanning electron microscopy (SEM), processability studies in a Monsanto processability tester (MPT), and dynamic mechanical analyses (DMA). © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The elastomeric nanocomposites based on organomontmorillonite (OMMT) and styrene‐(ethylene‐butylene)‐styrene (SEBS) thermoplastic elastomer were prepared by melt processing using maleic anhydride grafted SEBS (SEBS‐g‐MA) as compatibilizer. Thermo‐oxidative decomposition behavior of the neat components and the nanocomposites were investigated using thermogravimertic analysis (TGA) in air atmosphere. The isoconversional method is employed to study the kinetics of thermo‐oxidative degradation. The heating modes and the composition of nanocomposites were found to affect the kinetic parameters (Ea, lnA and n). The Ea and lnA values of SEBS, OMMT, and their composites are much higher under dynamic heating than under isothermal heating. The reaction order (n) of OMMT was lower than those of SEBS and their composites. The obtained TG profiles and calculated kinetic parameters indicated that the incorporation of OMMT into SEBS significantly improved the thermal stability both under dynamic heating and under isothermal heating. The simultaneously obtained DSC data showed that the enthalpy of thermal decomposition decreased with OMMT loading. No significant change in the nonisothermal and isothermal stability of the nanocomposites with addition of SEBS‐g‐MA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号