首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide (TiO2) thin film was fabricated using titanium isopropoxide as a precursor through an atmospheric low-temperature roll-to-roll chemical vapor deposition method. TiO2 was deposited on the PET substrate in the temperature range of room temperature to 100°C, and the working pressure was 740 Torr. The surface morphology of TiO2 thin film was analyzed by field emission scanning electron microscopy and a 2D surface profiler. The results revealed that the growth rate of TiO2 film was 31 nm/min at 100°C, and it also showed that the surface is uniform and smooth. Moreover, the lowest root mean square roughness (R q) value of 1.87 nm was obtained for TiO2 film prepared at 100°C. The composition of TiO2 film was confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The film showed very good chemical and optical properties while increasing the substrate deposition temperature. The UV–Vis spectroscopy analysis revealed that TiO2 films exhibited excellent optical transmittance, more than 91% observed in the visible region.  相似文献   

2.
Photocatalytic and hydrophilic TiO2 thin‐film applications include water purification, cancer therapy, solar energy conversion, self‐cleaning devices, and antifogging windows. We demonstrate superhydrophilicity of aerosol‐deposition (AD) TiO2 films on a glass substrate without use of a carrier solvent, thereby removing the possibility of impurity contamination. AD films exhibit high visible light transmittance (greater than 80%) and superhydrophilicity (0° contact angle) with even minimal UV‐light irradiation exposure. This AD method represents a significant step toward the realization of economically viable, functional thin films for the aforementioned applications.  相似文献   

3.
Ozone (O3) was employed as an oxygen source for the atomic layer deposition (ALD) of titanium dioxide (TiO2) based on tetrakis-dimethyl-amido titanium (TDMAT). The effects of deposition temperature and O3 feeding time on the film growth kinetics and physical/chemical properties of the TiO2 films were investigated. Film growth was possible at as low as 75 °C, and the growth rate (thickness/cycles) of TiO2 was minimally affected by varying the temperatures at 150–225 °C. Moreover, saturated growth behavior on the O3 feeding time was observed at longer than 0.5 s. Higher temperatures tend to provide films with lower levels of carbon impurities. The film thickness increased linearly as the number of cycles increased. With thicker films and at higher deposition temperatures, surface roughening tended to increase. The as-deposited films were amorphous regardless of the substrate temperatures and there was no change of crystal phase even after annealing at temperatures of 400–600 °C. The films deposited in 0.5 mm holes with an aspect ratio of 3: 1 showed an excellent conformality.  相似文献   

4.
The structure, morphology and surface roughness of Bi12TiO20 (BTO) thin films grown on R-sapphire by pulsed laser deposition (PLD) were studied at different substrate temperatures, target-substrate distances, oxygen pressures and laser-pulse repetition rates. Although the substrate temperature seems to be the most important experimental parameter, the gas pressure and the target–substrate distance played important role on the phase formed and film thickness, with a significant effect of the laser-pulse repetition rate on the films thickness and preferred orientation of the deposited film. Single-phase γ-Bi12TiO20 was obtained on substrates at 650?°C, while several BTO metastable phases were observed in films deposited on substrates at temperatures between 500 and 600?°C. By the first time, thin films of pure and textured δ-Bi12TiO20 were successfully growth on substrates at 450?°C. When annealed, all the films deposited at lower temperatures resulted in the thermodynamically stable γ-Bi12TiO20.  相似文献   

5.
We fabricated a new organic-inorganic hybrid superlattice film using molecular layer deposition [MLD] combined with atomic layer deposition [ALD]. In the molecular layer deposition process, polydiacetylene [PDA] layers were grown by repeated sequential adsorption of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet polymerization under a substrate temperature of 100°C. Titanium oxide [TiO2] inorganic layers were deposited at the same temperatures with alternating surface-saturating reactions of titanium tetrachloride and water. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the nanohybrid films. The transmission electron microscopy analysis of the titanium oxide cross-linked polydiacetylene [TiOPDA]-TiO2 thin films confirmed the MLD growth rate and showed that the films are amorphous superlattices. Composition and polymerization of the films were confirmed by infrared spectroscopy. The TiOPDA-TiO2 nanohybrid superlattice films exhibited good thermal and mechanical stabilities.  相似文献   

6.
Titanium oxide thin films were prepared on p-Si(l00) substrate by plasma enhanced chemical vapor deposition using high purity titanium isopropoxide and oxygen. The deposition rate was little affected by oxygen flow rate, but significantly affected by RF power, substrate temperature, carrier gas flow rate, and chamber pressure. Morphology of the film became coarser with increasing deposition time and chamber pressure, and the film showed less uniformity at high deposition rates. It was also found that the overall deposition process is controlled by heterogeneous surface reaction below 200°C., but controlled by mass transfer of reactants at higher temperatures. TiO2 films deposited at temperatures lower than 400°C was amorphous, but showed the anatase crystalline structure upon 400°C deposition. The dielectric constant was about 47 for the films post-treated by rapid-thermal annealing (RTA) at 800°C. The leakage current was about 2×10−5 A/cm2 for the films deposited at 400°C and RTA-treated at 600°C. However, it was decreased to less than 3×10−7 A/cm2 for the film RTA-treated at 800°C.  相似文献   

7.
The aim of this work was to assess the effect of the direct current magnetron sputtering parameters on the photocatalytic activity and photoinduced wettability of amorphous TiO2 films. TiO2 films were deposited on glass using the direct current magnetron sputtering technique, without heating, at different total working pressures. Qualitative analysis using in situ X-ray photoelectron spectroscopy confirmed the TiO2 stoichiometry of the deposited films. Surface structure was studied as a function of working pressure using scanning electron microscopy. The hydrophilicity of the TiO2 surfaces was investigated macroscopically using measurements of the water contact angle. A threshold working pressure was observed, with a strong dependence on the film thickness. A super hydrophilic surface was observed after less than 1 h of UV irradiation. The photocatalytic activity of the films was evaluated under UV light through the degradation of methylene blue (\(\lambda_{\hbox{max} } \approx 660\;{\text{nm}}\)). The effect of UV irradiation on the photocatalytic activity was rapid, strong, and dependent on film thickness and total working pressure. Fifty percent of organic compounds were photodegraded by films with a thickness of 60 nm deposited at 10 mTorr.  相似文献   

8.
We developed a method to use NH2-functionalized polymer films to align and immobilize DNA molecules on a Si substrate. The plasma-polymerized cyclohexane film was deposited on the Si substrate according to the radio frequency plasma-enhanced chemical vapor deposition method using a single molecular precursor, and it was then treated by the dielectric barrier discharge method in a nitrogen environment under atmospheric pressure. Changes in the chemistry of the surface functional groups were studied using X-ray photoelectron spectroscopy and Fourier transformed infrared spectroscopy. The wettability of the surfaces was examined using dynamic contact angle measurements, and the surface morphology was evaluated using atomic force microscopy.  相似文献   

9.
Polycrystalline diamond films are deposited on p-type Si(100) and n-type SiC(6H) substrates at low surface deposition temperatures of 370–530 °C using a microwave plasma enhanced chemical vapor deposition (MPECVD) system. The surface temperature during deposition is monitored by an IR pyrometer capable of measuring temperature between 250 and 600 °C in a microwave environment. The lower deposition temperature is achieved by using an especially designed cooling stage. The influence of the deposition conditions on the growth rate and structure of the diamond film is investigated. A very high growth rate up to 1.3 μm/h on SiC substrate at 530 °C surface temperature is attributed to an optimized Ar-rich Ar/H2/CH4 gas composition, deposition pressure, and microwave power. The structure and microstructure of the films are characterized by X-ray diffraction, scanning electron microscopy, and Raman spectroscopy. A detailed stress analysis of the deposited diamond films of grain sizes between 2 and 7 μm showed a net tensile residual stress and predominantly sp3-bonded carbon in the deposited films.  相似文献   

10.
The use of organo-silanes as coupling agents offers the potential to create novel structures using materials that would otherwise suffer from poor adhesion. γ-methacryloxypropyltrimethoxysilane (γ-MAPTS) layers were deposited on hydroxylated SiO2 surfaces using both vapor and solution deposition techniques. The films were characterized using variable angle spectroscopic ellipsometry, infrared spectroscopy, contact-angle measurements and X-ray photoelectron spectroscopy. Film thickness was relatively constant at ~6 Å for solution deposition times from 2 min to 2 h at 60° C. Water contact angle increased from 0° to 45° after silane deposition from solution. Room temperature vapor-deposited γ-MAPTS films showed similar thicknesses to those of solution deposited films but a markedly lower contact angle of 10°. Parylene N was chemical vapor deposited on the γ-MAPTS films and its adhesion was tested using the Scotch® Tape test. The γ-MAPTS improved adhesion of parylene N to the hydroxylated surface, with the adhesion for the vapor deposited silane films exhibiting a temperature and time dependence.  相似文献   

11.
The article reports on low-temperature high-rate sputtering of hydrophilic transparent TiO2 thin films using dc dual magnetron (DM) sputtering in Ar + O2 mixture on unheated glass substrates. The DM was operated in a bipolar asymmetric mode and was equipped with Ti(99.5) targets of 50 mm in diameter. The substrate surface temperature Tsurf measured by a thermostrip was less than 180 °C for all experiments. The effect of the repetition frequency fr was investigated in detail. It was found that the increase of fr from 100 to 350 kHz leads to (a) an improvement of the efficiency of the deposition process that results in a significant increase of the deposition rate aD of sputtered TiO2 films and (b) a decrease of peak pulse voltage and sustaining of the magnetron discharge at higher target power densities. It was demonstrated that several hundreds nm thick hydrophilic TiO2 films can be sputtered on unheated glass substrates at aD = 80 nm/min, Tsurf < 180 °C when high value of fr = 350 kHz was used. Properties of a thin hydrophilic TiO2 film deposited on a polycarbonate substrate are given.  相似文献   

12.
In this study, structural, morphological and optical properties, and gas sensor performance of magnesium oxide (MgO) doped titanium dioxide (TiO2) thin films were investigated in detail. Gas sensor metallic patterns were fabricated on Si substrate using traditional photolithographic technique. MgO doped TiO2 thin films were deposited on formed Pt electrode surface by confocal sputtering (co-sputtering) system as the active layer. Thin film characterizations were realized by using secondary ion mass spectroscopy (SIMS), atomic force microscope (AFM) and UV–Vis Spectrometer (UV–Vis). Gas sensing measurements were performed by gas sensing test system against methane gas at working temperature of 300?°C. To evaluate deposition and thermal annealing effects on the sensing performance, sensors were tested under gas. The sensitivity and response/recovery time of gas sensors were measured in 1000?ppm. MgO doped TiO2 based sensor at substrate temperature of 100?°C has high sensitivity and short response/recovery time.  相似文献   

13.
Selective synthesis of metastable polymorphs requires a fundamental understanding of the complex energy landscapes in which these phases form. Recently, the development of in situ high temperature and controlled atmosphere transmission electron microscopy has enabled the direct observation of nucleation, growth, and phase transformations with near atomic resolution. In this work, we directly observe the crystallization behavior of amorphous TiO2 thin films grown under different pulsed laser deposition conditions and quantify the mechanisms behind metastable crystalline polymorph stabilization. Films deposited at 10 mTorr chamber oxygen pressure crystallize into nanocrystalline Anatase at 325°C, whereas films deposited at 2 mTorr crystallize into significantly larger needle-like grains of Brookite and Anatase at 270°C. Increasing film deposition rate by a factor of 4 results in a 10× increase in the crystalline growth front velocity as well as a decrease in crystallization temperature from 270°C to 225°C. Engineering the amorphous precursor state through deposition conditions therefore provides routes to microstructure control and the accessibility of higher energy metastable phases.  相似文献   

14.
(Bi0.5Na0.5)TiO3 thin film growth by ex situ sputtering has been investigated and reported in this paper. An original approach, based on the growth process, was used in order to precisely control the film composition, which has never been reported in BNT growth. The bismuth content in the films and so the composition of amorphous sputtered films was controlled by a slight heating of the substrate during the growth (150–240°C). Then, films were crystallized, obviously without any change in composition, by a post-annealing treatment. More precisely, without substrate heating and using a stoichiometric target, the film presents an excess of Bi but when it is deposited at 200°C the film becomes stoichiometric. It was shown that the sticking coefficient of Bi is particularly sensitive even at low substrate temperatures, whereas Na and Ti sticking coefficients are not impacted. Followed by a post-annealing in air at 650°C, the composition of the amorphous BNT films deposited at 200°C remains stoichiometric and the film exhibits a high (100) preferred orientation in a pure perovskite phase and a dense microstructure. The evaluation of the electrical properties as a function of the Bi content in the film, adjusted by the deposition temperature, shows a strong impact on the ferroelectric properties where the best performances were obtained with the stoichiometric BNT film deposited at 200°C.  相似文献   

15.
The effects of deposition temperature on orientation, surface morphology and dielectric properties of the thin films for Ba0.6Sr0.4TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition were investigated. X-ray diffraction patterns revealed a (2 1 0) preferred orientation for all the films. With rising substrate temperature from 650 °C to 700 °C, the crystallinity and crystal grain size of the films increase, the relative dielectric constant increases, but the dielectric losses have not obvious difference. The film deposited at 350 °C and annealed at 700 °C has strongly improved roughness and dielectric permittivity compared with the film only deposited directly at 700 °C. Three distinct relaxation processes within tan(δ) were found for the BaxSr1?xTiO3 film: a broadened process of the film relaxation, an intermediate peak which originates from Maxwell–Wagner–Sillars polarization, and an extremely slow process ascribed to leak current. The complex dielectric permittivity and loss can be fitted by an improved Cole–Cole model corresponding to a stretched relaxation function.  相似文献   

16.
We studied supercritical carbon dioxide fluid deposition of titanium oxide (TiO2) in trench features on Si substrates using a flow-type deposition apparatus from titanium diisopropoxide bis(dipivaloylmethanate), aiming at fabricating conformal films at a relatively low temperature. We investigated the deposition rate and step coverage under a fluid temperature from 40 to 60 °C, a pressure from 8.0 to 10.0 MPa, and a substrate temperature from 80 to 120 °C. They were dependent on the fluid density, indicating that the solubility difference between the bulk fluid and the neighborhood of the substrate surface plays a decisive role for the deposition. An excellent conformal filling of the trench features was achieved from the fluid of 60 °C under 8 MPa on the substrate kept at 80–100 °C. The XPS spectra of the deposited film suggested partial formation of TiO2, and the XRD spectra showed the existence of some crystalline TiO2 (anatase).  相似文献   

17.
The super-hydrophilic amorphous titanium dioxide (TiO2) thin film was prepared by plasma-enhanced chemical vapor deposition (PECVD) process for an application to dehumidifying finned-tube heat exchangers. The chemical components and surface structure were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). The wettability and long-term durability were investigated by measuring the water contact angle and by performing wet/dry cycles. The samples were subjected to 1000 times of wet/dry cycles to establish long-term durability. The water contact angle of the amorphous TiO2 thin film was about 8° at as-deposited film with O2 plasma treatment and was about 15° after 1000 wet/dry cycles. The amorphous TiO2 thin film had excellent wettability and long-term durability under full wetting conditions.  相似文献   

18.
Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N2/H2 plasma in a hollow‐cathode plasma‐assisted atomic layer deposition reactor at low temperatures (≤450°C). A non‐saturating film deposition rate was observed for substrate temperatures above 250°C. BN films were characterized for their chemical composition, crystallinity, surface morphology, and optical properties. X‐ray photoelectron spectroscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high‐resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single‐phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450°C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800°C for 30 min. These results represent the first demonstration of hBN deposition using low‐temperature hollow‐cathode plasma‐assisted sequential deposition technique.  相似文献   

19.
Aluminum films were prepared on H2-plasma pretreated TiN substrates at deposition temperatures of 60-250 °C by metallorganic chemical vapor deposition using dimethylethylamine alane as a precursor. The films were highly pure and the growth rates were 3-50 nm/min, where the lowest deposition temperature was 60 °C. The resistivity was as low as 2.8 μΩcm. High substrate temperatures tended to favor a low resistivity and smooth surface morphology of the films, compared to films with a low temperature at a given thickness. Numerous empty pores appeared in the Al films deposited at a temperature below 150 °C when the film thickness exceeded 200 nm. The number of these pores tended to increase with decrease in temperature. However, in films deposited at temperatures above 200 °C, there were no pores and the large grains were interconnected to a high degree. Higher deposition temperatures yielded a greater preference of the (111) orientation of Al films.  相似文献   

20.
《Ceramics International》2016,42(12):13863-13867
Anatase phase TiO2 (a-TiO2) films have been deposited on MgAl2O4(100) substrates at the substrate temperatures of 500–650 °C by the metal organic chemical vapor deposition (MOCVD) method using tetrakis-dimethylamino titanium (TDMAT) as the organometallic (OM) source. The structural analyses indicated that the TiO2 film prepared at 600 °C had the best single crystalline quality with no twins. The out-of-plane and in-plane epitaxial relationships of the film were a-TiO2(001)||MgAl2O4(100) and TiO2[100]||MgAl2O4[100], respectively. A uniform and compact surface with stoichiometric composition was also obtained for the 600 °C-deposited sample. The average transmittance of all the TiO2 films in the visible range exceeded 91% and the optical band gap of the films varied from 3.31 to 3.41 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号