首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past few years, multi-objective optimization algorithms have been extensively applied in several fields including engineering design problems. A major reason is the advancement of evolutionary multi-objective optimization (EMO) algorithms that are able to find a set of non-dominated points spread on the respective Pareto-optimal front in a single simulation. Besides just finding a set of Pareto-optimal solutions, one is often interested in capturing knowledge about the variation of variable values over the Pareto-optimal front. Recent innovization approaches for knowledge discovery from Pareto-optimal solutions remain as a major activity in this direction. In this article, a different data-fitting approach for continuous parameterization of the Pareto-optimal front is presented. Cubic B-spline basis functions are used for fitting the data returned by an EMO procedure in a continuous variable space. No prior knowledge about the order in the data is assumed. An automatic procedure for detecting gaps in the Pareto-optimal front is also implemented. The algorithm takes points returned by the EMO as input and returns the control points of the B-spline manifold representing the Pareto-optimal set. Results for several standard and engineering, bi-objective and tri-objective optimization problems demonstrate the usefulness of the proposed procedure.  相似文献   

2.
This article proposes a new multi-objective evolutionary algorithm, called neighbourhood exploring evolution strategy (NEES). This approach incorporates the idea of neighbourhood exploration together with other techniques commonly used in the multi-objective evolutionary optimization literature (namely, non-dominated sorting and diversity preservation mechanisms). The main idea of the proposed approach was derived from a single-objective evolutionary algorithm, called the line-up competition algorithm (LCA), and it consists of assigning neighbourhoods of different sizes to different solutions. Within each neighbourhood, new solutions are generated using a (1+λ)-ES (evolution strategy). This scheme naturally balances the effect of local search (which is performed by the neighbourhood exploration mechanism) with that of the global search performed by the algorithm, and gradually impels the population to progress towards the true Pareto-optimal front of the problem to explore the extent of that front. Three versions of the proposal are studied: a (1+1)-NEES, a (1+2)-NEES and a (1+4)-NEES. Such approaches are validated on a set of standard test problems reported in the specialized literature. Simulation results indicate that, for continuous numerical optimization problems, the proposal (particularly the (1+1)-NEES) is competitive with respect to NSGA-II, which is an algorithm representative of the state-of-the-art in evolutionary multi-objective optimization. Moreover, all the versions of NEES improve on the results of NSGA-II when dealing with a discrete optimization problem. Although preliminary, such results might indicate a potential application area in which the proposed approach could be particularly useful.  相似文献   

3.
An optimal feeding profile for a fed-batch process was designed based on an evolutionary algorithm. Usually the presence of multiple objectives in a problem leads to a set of optimal solutions, commonly known as Pareto-optimal solutions. Evolutionary algorithms are well suited for deriving multi-objective optimisation since they evolve a set of non-dominated solutions distributed along the Pareto front. Several evolutionary multi-objective optimisation algorithms have been developed, among which the Non-dominated Sorting Genetic Algorithm NSGA-II is recognised to be very effective in overcoming a variety of problems. To demonstrate the applicability of this technique, an optimal control problem from the literature was solved using several methods considering the single-objective dynamic optimisation problem.  相似文献   

4.
In multi-objective optimization computing, it is important to assign suitable parameters to each optimization problem to obtain better solutions. In this study, a self-adaptive multi-objective harmony search (SaMOHS) algorithm is developed to apply the parameter-setting-free technique, which is an example of a self-adaptive methodology. The SaMOHS algorithm attempts to remove some of the inconvenience from parameter setting and selects the most adaptive parameters during the iterative solution search process. To verify the proposed algorithm, an optimal least cost water distribution network design problem is applied to three different target networks. The results are compared with other well-known algorithms such as multi-objective harmony search and the non-dominated sorting genetic algorithm-II. The efficiency of the proposed algorithm is quantified by suitable performance indices. The results indicate that SaMOHS can be efficiently applied to the search for Pareto-optimal solutions in a multi-objective solution space.  相似文献   

5.
C. Dimopoulos 《工程优选》2013,45(5):551-565
Although many methodologies have been proposed for solving the cell-formation problem, few of them explicitly consider the existence of multiple objectives in the design process. In this article, the development of multi-objective genetic programming single-linkage cluster analysis (GP-SLCA), an evolutionary methodology for the solution of the multi-objective cell-formation problem, is described. The proposed methodology combines an existing algorithm for the solution of single-objective cell-formation problems with NSGA-II, an elitist evolutionary multi-objective optimization technique. Multi-objective GP-SLCA is able to generate automatically a set of non-dominated solutions for a given multi-objective cell-formation problem. The benefits of the proposed approach are illustrated using an example test problem taken from the literature and an industrial case study.  相似文献   

6.
This paper considers the problem of parallel machine scheduling with sequence-dependent setup times to minimise both makespan and total earliness/tardiness in the due window. To tackle the problem considered, a multi-phase algorithm is proposed. The goal of the initial phase is to obtain a good approximation of the Pareto-front. In the second phase, to improve the Pareto-front, non-dominated solutions are unified to constitute a big population. In this phase, based on the local search in the Pareto space concept, three multi-objective hybrid metaheuristics are proposed. Covering the whole set of Pareto-optimal solutions is a desired task of multi-objective optimisation methods. So in the third phase, a new method using an e-constraint hybrid metaheuristic is proposed to cover the gaps between the non-dominated solutions and improve the Pareto-front. Appropriate combinations of multi-objective methods in various phases are considered to improve the total performance. The multi-phase algorithm iterates over a genetic algorithm in the first phase and three hybrid metaheuristics in the second and third phases. Experiments on the test problems with different structures show that the multi-phase method is a better tool to approximate the efficient set than the global archive sub-population genetic algorithm presented previously.  相似文献   

7.
The paper describes a migration strategy to improve classical non-dominated sorting genetic algorithm (NSGA) to find optimal solution of a multi-objective problem. Migration NSGA has been tested to assess its performance using analytical functions for which the Pareto front is known in analytical form, as well as two case studies in electromagnetics, for which the Pareto front is not known a priori. This strategy improves the approximation of the Pareto-optimal solutions of a multi-objective problem by introducing new individuals in the population miming the effect of migrations.  相似文献   

8.
Solving constrained optimization problems (COPs) via evolutionary algorithms (EAs) has attracted much attention. In this article, an orthogonal design based constrained optimization evolutionary algorithm (ODCOEA) to tackle COPs is proposed. In principle, ODCOEA belongs to a class of steady state evolutionary algorithms. In the evolutionary process, several individuals are chosen from the population as parents and orthogonal design is applied to pairs of parents to produce a set of representative offspring. Then, after combining the offspring generated by different pairs of parents, non-dominated individuals are chosen. Subsequently, from the parent’s perspective, it is decided whether a non-dominated individual replaces a selected parent. Finally, ODCOEA incorporates an improved BGA mutation operator to facilitate the diversity of the population. The proposed ODCOEA is effectively applied to 12 benchmark test functions. The computational experiments show that ODCOEA not only quickly converges to optimal or near-optimal solutions, but also displays a very high performance compared with another two state-of-the-art techniques.  相似文献   

9.
Particle swarm optimization (PSO) is a randomized and population-based optimization method that was inspired by the flocking behaviour of birds and human social interactions. In this work, multi-objective PSO is modified in two stages. In the first stage, PSO is combined with convergence and divergence operators. Here, this method is named CDPSO. In the second stage, to produce a set of Pareto optimal solutions which has good convergence, diversity and distribution, two mechanisms are used. In the first mechanism, a new leader selection method is defined, which uses the periodic iteration and the concept of the particle's neighbour number. This method is named periodic multi-objective algorithm. In the second mechanism, an adaptive elimination method is employed to limit the number of non-dominated solutions in the archive, which has influences on computational time, convergence and diversity of solution. Single-objective results show that CDPSO performs very well on the complex test functions in terms of solution accuracy and convergence speed. Furthermore, some benchmark functions are used to evaluate the performance of periodic multi-objective CDPSO. This analysis demonstrates that the proposed algorithm operates better in three metrics through comparison with three well-known elitist multi-objective evolutionary algorithms. Finally, the algorithm is used for Pareto optimal design of a two-degree of freedom vehicle vibration model. The conflicting objective functions are sprung mass acceleration and relative displacement between sprung mass and tyre. The feasibility and efficiency of periodic multi-objective CDPSO are assessed in comparison with multi-objective modified NSGAII.  相似文献   

10.
A multi-objective genetic algorithm (MOGA) solution approach for a sequencing problem to coordinate set-ups between two successive stages of a supply chain is presented in this paper. The production batches are processed according to the same sequence in both stages. Each production batch has two distinct attributes and a set-up occurs in the upstream stage every time the first attribute of the new batch is different from the previous one. In the downstream stage, there is a set-up when the second attribute of the new batch is different from that of the previous one. Two objectives need to be considered in sequencing the production batches including minimizing total set-ups and minimizing the maximum number of set-ups between the two stages. Both problems are NP-hard so attainment of an optimal solution for large problems is prohibited. The solution approach starts with an initialization stage followed by evolution of the initial solution set over generations. The MOGA makes use of non-dominated sorting and a niche mechanism to rank individuals in the population. Selected individuals taken from a given population form the succeeding generation using four genetic operators as: reproduction, crossover, mutation and inversion. Experiments in a number of test problems show that the MOGA is capable of finding Pareto-optimal solutions for small problems and near Pareto-optimal solutions for large instances in a short CPU time.  相似文献   

11.
A novel immune algorithm is suggested for finding Pareto-optimal solutions to multiobjective optimization problems based on opt-aiNET, the artificial immune system algorithm for multi-modal optimization. In the proposed algorithm, a randomly weighted sum of multiple objectives is used as a fitness function, and a local search algorithm is incorporated to facilitate the exploitation of the search space. Specifically, a new truncation algorithm with similar individuals (TASI) is proposed to preserve the diversity of the population. Also, a new selection operator is presented to create the new population based on TASI. Simulation results on seven standard problems (ZDT2, ZDT6, DEB, VNT, BNH, OSY and KIT) show that the proposed algorithm is able to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the vector immune algorithm and the elitist non-dominated sorting genetic system.  相似文献   

12.
This article presents a particle swarm optimizer (PSO) capable of handling constrained multi-objective optimization problems. The latter occur frequently in engineering design, especially when cost and performance are simultaneously optimized. The proposed algorithm combines the swarm intelligence fundamentals with elements from bio-inspired algorithms. A distinctive feature of the algorithm is the utilization of an arithmetic recombination operator, which allows interaction between non-dominated particles. Furthermore, there is no utilization of an external archive to store optimal solutions. The PSO algorithm is applied to multi-objective optimization benchmark problems and also to constrained multi-objective engineering design problems. The algorithmic effectiveness is demonstrated through comparisons of the PSO results with those obtained from other evolutionary optimization algorithms. The proposed particle swarm optimizer was able to perform in a very satisfactory manner in problems with multiple constraints and/or high dimensionality. Promising results were also obtained for a multi-objective engineering design problem with mixed variables.  相似文献   

13.
This article proposes an improved imperialistic competitive algorithm to solve multi-objective optimization problems. The proposed multi-objective imperialistic competitive algorithm (MOICA) uses the elitist strategy, based on the mutation and crossover as in genetic algorithms, and the Pareto concept to store simultaneously optimal solutions of multiple conflicting functions. Three performance metrics are used to evaluate the performance of the new algorithm: convergence to the true Pareto-optimal set, solution diversity and robustness, characterized by the variance over 10 runs. To validate the efficiency of the proposed algorithm, several multi-objective standard test functions with true solutions are used. The obtained results show that the MOICA outperforms most of the methods available in the literature. The proposed algorithm can also handle multi-objective engineering design problems with high dimensions.  相似文献   

14.
In this article, a customized evolutionary optimization procedure is developed for generating minimum weight compliant mechanisms. A previously-suggested concept of multi-objectivization in which a helper objective is introduced in addition to the primary objective of the original single-objective optimization problem (SOOP) is used here. The helper objective is chosen in a way such that it is in conflict with the primary objective, thereby causing an evolutionary multi-objective optimization algorithm to maintain diversity in its population from one generation to another. The elitist non-dominated sorting genetic algorithm (NSGA-II) is customized with a domain-specific initialization strategy, a domain-specific crossover operator, and a domain-specific solution repairing strategy. To make the search process computationally tractable, the proposed methodology is made suitable for parallel computing. A local search methodology is applied on the evolved non-dominated solutions found by the above-mentioned modified NSGA-II to refine the solutions further. Two case studies for tracing curvilinear and straight-line paths are performed. Results demonstrate that solutions having smaller weight than the reference design solution obtained by SOOP are found by the proposed procedure. Interesting facts and observations brought out by the study are also narrated and conclusions of the study are made.  相似文献   

15.
Multi-objective flow shop scheduling plays a key role in real-life scheduling problem which attract the researcher attention. The primary concern is to find the best sequence for flow shop scheduling problem. Estimation of Distribution Algorithms (EDAs) has gained sufficient attention from the researchers and it provides prominent results as an alternate of traditional evolutionary algorithms. In this paper, we propose the pareto optimal block-based EDA using bivariate model for multi-objective flow shop scheduling problem. We apply a bivariate probabilistic model to generate block which have the better diversity. We employ the non-dominated sorting technique to filter the solutions. To check the performance of proposed approach, we test it on the benchmark problems available in OR-library and then we compare it with non-dominated sorting genetic algorithm-II (NSGA-II). Computational results show that pareto optimal BBEDA provides better result and better convergence than NSGA-II.  相似文献   

16.
Ran Cao  Wei Hou  Yanying Gao 《工程优选》2018,50(9):1453-1469
This article presents a three-stage approach for solving multi-objective system reliability optimization problems considering uncertainty. The reliability of each component is considered in the formulation as a component reliability estimate in the form of an interval value and discrete values. Component reliability may vary owing to variations in the usage scenarios. Uncertainty is described by defining a set of usage scenarios. To address this problem, an entropy-based approach to the redundancy allocation problem is proposed in this study to identify the deterministic reliability of each component. In the second stage, a multi-objective evolutionary algorithm (MOEA) is applied to produce a Pareto-optimal solution set. A hybrid algorithm based on k-means and silhouettes is performed to select representative solutions in the third stage. Finally, a numerical example is presented to illustrate the performance of the proposed approach.  相似文献   

17.
It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.  相似文献   

18.
A meshless Galerkin Pareto-optimal method is proposed for topology optimization of continuum structures in this paper. The compactly supported radial basis function (CSRBF) is used to create shape functions. The shape function is constructed by meshfree approximations based on a set of unstructured field nodes. Considering the Pareto-optimality theory, the initial single objective topology optimization problem is transformed into multi-objective problem. The optimum solution is traced via the Pareto-optimal frontier in a computationally effective manner. The optimal problem does not need to be solved directly. Finally, several examples are used to prove the validity and effectiveness of the proposed approach.  相似文献   

19.
This paper proposes a multi-objective hybrid artificial bee colony (MOHABC) algorithm for service composition and optimal selection (SCOS) in cloud manufacturing, in which both the quality of service and the energy consumption are considered from the perspectives of economy and environment that are two pillars of sustainable manufacturing. The MOHABC uses the concept of Pareto dominance to direct the searching of a bee swarm, and maintains non-dominated solution found in an external archive. In order to achieve good distribution of solutions along the Pareto front, cuckoo search with Levy flight is introduced in the employed bee search to maintain diversity of population. Furthermore, to ensure the balance of exploitation and exploration capabilities for MOHABC, the comprehensive learning strategy is designed in the onlooker search so that every bee learns from the external archive elite, itself and other onlookers. Experiments are carried out to verify the effect of the improvement strategies and parameters’ impacts on the proposed algorithm and comparative study of the MOHABC with typical multi-objective algorithms for SCOS problems are addressed. The results show that the proposed approach obtains very promising solutions that significantly surpass the other considered algorithms.  相似文献   

20.
针对实际工程优化问题,为了提高效率和减少近似模型带来的误差,提出一种基于模型管理的多目标优化方法。利用加强径向基插值函数在整个寻优区域内构造目标和约束的近似模型,结合微型多目标遗传算法寻找当前非支配解。通过模型管理方法更新近似模型,并控制由于近似模型带来的误差和更新次数,最后将误差控制在一定范围内的多个非支配解当作实际问题的解。在测试函数中验证了此方法的效率及非支配解的精度和分布的均匀性。最后成功应用于车身薄壁构件的耐撞性优化中,表明了可用于求解复杂的工程优化问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号