首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
行人检测是近年来计算机视觉领域中备受关注的前沿方向和研究热点.以单目视觉传感器作为外界环境信息获取的主要手段,建立了一个包含行人分割、识别的检测系统.根据行人特有的一些特征,提出了基于垂直边缘和边缘对称性的行人分割方法,并进行精确定位.在行人识别阶段利用HOG特征进行特征提取,然后利用线性支持向量机进行行人识别.对大量...  相似文献   

2.
传统的HOG算法针对整幅图像进行行人特征提取,大量的非人窗口计算必然降低检测的准确率和效率。为此,提出一种基于OTSU分割和HOG特征的行人检测与跟踪方法。利用OTSU算法以最佳阈值分割图像,在分割区域的基础上进行Canny边缘检测,通过边缘的对称性计算确定行人候选区,继而采用经PCA方法降维后的HOG特征和隐马尔可夫模型对行人候选区进行检测验证。最后,以确定的行人区域为跟踪窗口,利用CamShift算法跟踪行人。多组实验结果证明,本文方法的行人检测效率和精度均有所提高,跟踪性能稳定、可靠。  相似文献   

3.
针对传统粒子滤波算法颜色特征单一、行人非刚性不稳定等问题,融合简化的HOG特征和加权的颜色直方图,建立了改进的粒子滤波行人跟踪算法,采用图像分块相似度检测,抑制跟踪过程中行人结构、背景结构及遮挡的干扰。实验表明,该算法在背景颜色相似及遮挡情况下,仍能稳定可靠地跟踪行人,具有较高的准确性与鲁棒性。  相似文献   

4.
针对梯度方向直方图(HOG)算法采用网格密集的大小统一的细胞单元提取行人特征,导致大量高维度的冗余特征问题,提出了低维度特征进行行人检测的算法,建立了以空间金字塔为核心的低维度特征目标模型.该模型通过角点检测算法获取目标轮廓信息,以角点为参考点取16* 16像素区域内的梯度方向直方图作为行人特征,利用空间金字塔模型对图像进行分决,按块提取维数统一的特征向量并串联起来形成最终的特征向量.实验结果表明了该方法的准确性和有效性.  相似文献   

5.
Most of the existing video object detection schemes are either computationally extensive or fail to detect moving objects in different challenging situations. In this paper, we propose a robust and computationally inexpensive scheme to detect moving objects in video. The threefold approach begins with computation of difference images using temporal information. Difference images are calculated by subtracting two input frames, at each pixel position. Instead of generating difference images using the traditional continuous frame difference approach, we propose using a fixed number of alternate frames centered around the current frame. This approach aids in reducing the computational complexity without compromising on quality of the difference images. After computation of difference images, a novel post-processing scheme is employed by utilizing gamma correction factor and Mahalanobis distance metric to reduce false positives and false negatives. Object segmentation is finally performed on the refined difference image by a local fuzzy thresholding scheme. This avoids problems that are usually encountered in hard thresholding, especially pixel misclassification, which is the most important one. For robust experimental analysis, videos from changedetction.net, CAVIAR, and http://perception.i2r datasets have been used. These selected videos contain a wide variety of common challenges faced during object detection. Some examples are the presence of dynamic backgrounds, shadows, bad weather, etc. The results establish the effectiveness of the proposed scheme over some of the existing schemes both qualitatively and quantitatively as delineated in the experimental result section.  相似文献   

6.
为快速定位车辆前方的行人,提出一种基于腿部感兴趣区域梯度方向直方图(HOG)特征的行人检测方法。将可能存在行人腿部的区域作为感兴趣区域,采用Sobel算子增强腿部垂直边缘特征,并提取梯度方向直方图特征,有效地降低了特征向量的维数;在检测过程中仅扫描可能存在行人腿部的图像下半部分,并在整幅图像的块内计算HOG特征,减少了复杂背景对行人检测干扰,进一步简化了检测过程;基于垂直边缘对称性特征对检测结果进行融合。实验结果表明,该算法能在保持检测率的同时提高检测速度。  相似文献   

7.
针对传统梯度方向直方图(HOG)行人检测系统中检测窗扫描区域过大、HOG特征维度大而引起的检测速度慢问题,提出了改进的视频行人检测算法.通过运动信息提取感兴趣(ROI)目标区域,利用Fisher准则和多尺度特性选取具有强分辨力的行人HOG特征从而降低特征维数,结合支持向量机(SVM)检测行人.实验结果表明,本文方法在保证视频行人检测的准确率的同时,有效地提高了行人检测的速率.  相似文献   

8.
针对自然背景下的行人检测问题,提出一种多特征与霍夫森林结合的行人检测算法。在特征提取阶段,分别采用梯度方向直方图、局部二值模式和LAB颜色空间来提取行人的梯度、纹理和颜色频率特征,构成丰富的特征集来描述行人;采用霍夫森林算法来创建分类器,对其投票方式进行改进,提出一种基于高斯模板的区域加权投票方式,提高了检测精度。实验结果表明,该算法在误检率FPPW为10-4时,检测率为90.12%, ROC曲线性能上优于 HOG+SVM 与原霍夫森林算法。  相似文献   

9.
Railway tracks detection and turnouts recognition are the basic tasks in driver assistance systems, which can determine the interesting regions for detecting obstacles and signals. In this paper, a novel railway tracks detection and turnouts recognition method using HOG (Histogram of Oriented Gradients) features was presented. At first, the approach computes HOG features and establishes integral images, and then extracts railway tracks by region-growing algorithm. Then based on recognizing the open direction of the turnout, we find the path where the train will travel through. Experiments demonstrated that our method was able to correctly extract tracks and recognize turnouts even in very bad illumination conditions and run fast enough for practical use. In addition, our approach only needs a computer and a cheap camera installed in the railroad vehicle, not specialized hardwares and equipment.  相似文献   

10.
This paper presents a system that can perform pedestrian detection and tracking using vision-based techniques. A very important issue in the field of intelligent transportation system is to prevent pedestrians from being hit by vehicles. Recently, a great number of vision-based techniques have been proposed for this purpose. In this paper, we propose a vision-based method, which combines the use of a pedestrian model as well as the walking rhythm of pedestrians to detect and track walking pedestrians. Through integrating some spatial and temporal information grabbed by a vision system, we are able to develop a reliable system that can be used to prevent traffic accidents happened at crossroads. In addition, the proposed system can deal with the occlusion problem. Experimental results obtained by executing some real world cases have demonstrated that the proposed system is indeed superb.  相似文献   

11.
In this paper, we present an approach toward pedestrian detection and tracking from infrared imagery using joint shape and appearance cues. A layered representation is first introduced and a generalized expectation-maximization (EM) algorithm is developed to separate infrared images into background (still) and foreground (moving) layers regardless of camera panning. In the two-pass scheme of detecting pedestrians from the foreground layer: shape cue is first used to eliminate non-pedestrian moving objects and then appearance cue helps to locate the exact position of pedestrians. Templates with varying sizes are sequentially applied to detect pedestrians at multiple scales to accommodate different camera distances. To facilitate the task of pedestrian tracking, we formulate the problem of shot segmentation and present a graph matching-based tracking algorithm that jointly exploits the shape, appearance and distance information. Experimental results with both OSU Infrared Image Database and WVU Infrared Video Database are reported to demonstrate the accuracy and robustness of our algorithm.  相似文献   

12.
为了提高跟踪算法在目标发生形变和被遮挡时的准确性,提出一种融合HOG(histogram of oriented gradient)特征和注意力模型的孪生目标跟踪算法.首先,采用对ResNet残差模型改进后的CIR(cropping inside residual)模型塑造孪生目标跟踪网络的骨干网络,充分利用不同层次的特征图,同时加深网络;其次,融入HOG特征,增强网络对图形几何变化的鲁棒性;再次,加入CBAM(convolutional block attention module)注意力模型,使网络能够在结合上下文信息的同时调节HOG特征在特征图中所占比例,增强特征图中的有效特征,弱化无效特征,使网络中各特征图发挥出最好的效果;最后,定义算法的损失函数.实验结果表明,所提算法在GOT-10k数据集上进行训练后,能够在OTB100上获得较好的跟踪效果,在该数据集中精确率和成功率分别达到81.9%和60.6%.在目标物体发生形变和被遮挡的情况下,所提算法仍能取得较好的跟踪效果.  相似文献   

13.
行人检测与跟踪在司机辅助安全系统和视频监控等领域具有重要的地位.针对目前存在的关键问题,如人体运动,相机运动,背景及形状、角度等变化对检测及跟踪带来的干扰,提出了一种将运动信息与形状信息相结合的行人检测方法,准确检测运动摄像机拍摄的直立运动人体;使用了基于小面积目标的跟踪算法进行人体跟踪;利用实际拍摄的视频序列进行算法验证.实验结果表明,混合检测算法速度快,准确率高;基于小面积的跟踪算法能够鲁棒的跟踪检测到的运动人体.  相似文献   

14.
田仙仙  鲍泓  徐成 《计算机科学》2014,41(9):320-324
针对HOG特征检测准确率高、计算量大的特点,通过对HOG特征的结构进行调整,提出了使用Fisher特征挑选准则来挑选出有区别能力的行人特征块,得到MultiHOG特征。该算法结合线性SVM二值分类器,实现行人滑动窗口检测。用Inria标准数据集和自行拍摄数据集进行了测试,结果证明该算法较HOG在准确率及实时性上都有很大的提高。  相似文献   

15.
高山  毕笃彦  魏娜 《计算机应用》2009,29(6):1669-1672
提出了一种基于抽样一致性(SACON)的背景模型。采用七种典型视频序列进行了实验,SACON背景模型较目前常用五种背景模型具有较高的准确性,适用于复杂场景下的目标检测与跟踪。应用于人体检测与跟踪时,将目标作为非刚性物体进行处理,结合颜色和空域信息建立一种新的目标外观模型。实验证明,该方法能较准确的描述人体特征,即使在有遮挡、颜色相近及小目标等情况下也均能准确的对人体目标进行检测和跟踪。  相似文献   

16.
17.
18.
基于感兴趣区梯度方向直方图的行人检测   总被引:4,自引:1,他引:3       下载免费PDF全文
曾春  李晓华  周激流 《计算机工程》2009,35(24):182-184
针对以梯度方向直方图作为人体特征的行人检测存在向量维数较大、检测时间较长的问题,提出基于感兴趣区梯度方向直方图的行人检测方法,分别在头部及四肢等重点区域计算梯度方向直方图,有效地减少了向量维数。实验结果表明,该方法在检测率基本不变的情况下提高了检测速度。  相似文献   

19.
This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model-based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multi-processing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame.  相似文献   

20.
行人检测在人工智能系统、车辆辅助驾驶系统和智能监控等领域具有重要的应用,是当前的研究热点.针对HOG特征不明显、支持向量机(SVM)分类器计算复杂度高,导致识别率低和检测速度慢的问题,本文提出了一种改进的基于增强型HOG的行人检测算法.该算法首先预处理原始图像并提取其HOG特征,然后增强该特征生成增强型HOG,经XGBoost分类器进行行人检测.在INRIA数据集上进行测试,实验结果表明所提算法识别率高达95.49%,有效地提高了行人检测性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号