共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
传统的HOG算法针对整幅图像进行行人特征提取,大量的非人窗口计算必然降低检测的准确率和效率。为此,提出一种基于OTSU分割和HOG特征的行人检测与跟踪方法。利用OTSU算法以最佳阈值分割图像,在分割区域的基础上进行Canny边缘检测,通过边缘的对称性计算确定行人候选区,继而采用经PCA方法降维后的HOG特征和隐马尔可夫模型对行人候选区进行检测验证。最后,以确定的行人区域为跟踪窗口,利用CamShift算法跟踪行人。多组实验结果证明,本文方法的行人检测效率和精度均有所提高,跟踪性能稳定、可靠。 相似文献
3.
4.
针对梯度方向直方图(HOG)算法采用网格密集的大小统一的细胞单元提取行人特征,导致大量高维度的冗余特征问题,提出了低维度特征进行行人检测的算法,建立了以空间金字塔为核心的低维度特征目标模型.该模型通过角点检测算法获取目标轮廓信息,以角点为参考点取16* 16像素区域内的梯度方向直方图作为行人特征,利用空间金字塔模型对图像进行分决,按块提取维数统一的特征向量并串联起来形成最终的特征向量.实验结果表明了该方法的准确性和有效性. 相似文献
5.
Nihal Paul Ashish Singh Abhishek Midya Partha Pratim Roy Debi Prosad Dogra 《The Journal of supercomputing》2017,73(3):1120-1139
Most of the existing video object detection schemes are either computationally extensive or fail to detect moving objects in different challenging situations. In this paper, we propose a robust and computationally inexpensive scheme to detect moving objects in video. The threefold approach begins with computation of difference images using temporal information. Difference images are calculated by subtracting two input frames, at each pixel position. Instead of generating difference images using the traditional continuous frame difference approach, we propose using a fixed number of alternate frames centered around the current frame. This approach aids in reducing the computational complexity without compromising on quality of the difference images. After computation of difference images, a novel post-processing scheme is employed by utilizing gamma correction factor and Mahalanobis distance metric to reduce false positives and false negatives. Object segmentation is finally performed on the refined difference image by a local fuzzy thresholding scheme. This avoids problems that are usually encountered in hard thresholding, especially pixel misclassification, which is the most important one. For robust experimental analysis, videos from changedetction.net, CAVIAR, and http://perception.i2r datasets have been used. These selected videos contain a wide variety of common challenges faced during object detection. Some examples are the presence of dynamic backgrounds, shadows, bad weather, etc. The results establish the effectiveness of the proposed scheme over some of the existing schemes both qualitatively and quantitatively as delineated in the experimental result section. 相似文献
6.
为快速定位车辆前方的行人,提出一种基于腿部感兴趣区域梯度方向直方图(HOG)特征的行人检测方法。将可能存在行人腿部的区域作为感兴趣区域,采用Sobel算子增强腿部垂直边缘特征,并提取梯度方向直方图特征,有效地降低了特征向量的维数;在检测过程中仅扫描可能存在行人腿部的图像下半部分,并在整幅图像的块内计算HOG特征,减少了复杂背景对行人检测干扰,进一步简化了检测过程;基于垂直边缘对称性特征对检测结果进行融合。实验结果表明,该算法能在保持检测率的同时提高检测速度。 相似文献
7.
针对传统梯度方向直方图(HOG)行人检测系统中检测窗扫描区域过大、HOG特征维度大而引起的检测速度慢问题,提出了改进的视频行人检测算法.通过运动信息提取感兴趣(ROI)目标区域,利用Fisher准则和多尺度特性选取具有强分辨力的行人HOG特征从而降低特征维数,结合支持向量机(SVM)检测行人.实验结果表明,本文方法在保证视频行人检测的准确率的同时,有效地提高了行人检测的速率. 相似文献
8.
针对自然背景下的行人检测问题,提出一种多特征与霍夫森林结合的行人检测算法。在特征提取阶段,分别采用梯度方向直方图、局部二值模式和LAB颜色空间来提取行人的梯度、纹理和颜色频率特征,构成丰富的特征集来描述行人;采用霍夫森林算法来创建分类器,对其投票方式进行改进,提出一种基于高斯模板的区域加权投票方式,提高了检测精度。实验结果表明,该算法在误检率FPPW为10-4时,检测率为90.12%, ROC曲线性能上优于 HOG+SVM 与原霍夫森林算法。 相似文献
9.
Railway tracks detection and turnouts recognition are the basic tasks in driver assistance systems, which can determine the interesting regions for detecting obstacles and signals. In this paper, a novel railway tracks detection and turnouts recognition method using HOG (Histogram of Oriented Gradients) features was presented. At first, the approach computes HOG features and establishes integral images, and then extracts railway tracks by region-growing algorithm. Then based on recognizing the open direction of the turnout, we find the path where the train will travel through. Experiments demonstrated that our method was able to correctly extract tracks and recognize turnouts even in very bad illumination conditions and run fast enough for practical use. In addition, our approach only needs a computer and a cheap camera installed in the railroad vehicle, not specialized hardwares and equipment. 相似文献
10.
Chia-Jung Pai Author Vitae Author Vitae Yu-Ming Liang Author Vitae Author Vitae Sei-Wang Chen Author Vitae 《Pattern recognition》2004,37(5):1025-1034
This paper presents a system that can perform pedestrian detection and tracking using vision-based techniques. A very important issue in the field of intelligent transportation system is to prevent pedestrians from being hit by vehicles. Recently, a great number of vision-based techniques have been proposed for this purpose. In this paper, we propose a vision-based method, which combines the use of a pedestrian model as well as the walking rhythm of pedestrians to detect and track walking pedestrians. Through integrating some spatial and temporal information grabbed by a vision system, we are able to develop a reliable system that can be used to prevent traffic accidents happened at crossroads. In addition, the proposed system can deal with the occlusion problem. Experimental results obtained by executing some real world cases have demonstrated that the proposed system is indeed superb. 相似文献
11.
In this paper, we present an approach toward pedestrian detection and tracking from infrared imagery using joint shape and appearance cues. A layered representation is first introduced and a generalized expectation-maximization (EM) algorithm is developed to separate infrared images into background (still) and foreground (moving) layers regardless of camera panning. In the two-pass scheme of detecting pedestrians from the foreground layer: shape cue is first used to eliminate non-pedestrian moving objects and then appearance cue helps to locate the exact position of pedestrians. Templates with varying sizes are sequentially applied to detect pedestrians at multiple scales to accommodate different camera distances. To facilitate the task of pedestrian tracking, we formulate the problem of shot segmentation and present a graph matching-based tracking algorithm that jointly exploits the shape, appearance and distance information. Experimental results with both OSU Infrared Image Database and WVU Infrared Video Database are reported to demonstrate the accuracy and robustness of our algorithm. 相似文献
12.
为了提高跟踪算法在目标发生形变和被遮挡时的准确性,提出一种融合HOG(histogram of oriented gradient)特征和注意力模型的孪生目标跟踪算法.首先,采用对ResNet残差模型改进后的CIR(cropping inside residual)模型塑造孪生目标跟踪网络的骨干网络,充分利用不同层次的特征图,同时加深网络;其次,融入HOG特征,增强网络对图形几何变化的鲁棒性;再次,加入CBAM(convolutional block attention module)注意力模型,使网络能够在结合上下文信息的同时调节HOG特征在特征图中所占比例,增强特征图中的有效特征,弱化无效特征,使网络中各特征图发挥出最好的效果;最后,定义算法的损失函数.实验结果表明,所提算法在GOT-10k数据集上进行训练后,能够在OTB100上获得较好的跟踪效果,在该数据集中精确率和成功率分别达到81.9%和60.6%.在目标物体发生形变和被遮挡的情况下,所提算法仍能取得较好的跟踪效果. 相似文献
13.
行人检测与跟踪在司机辅助安全系统和视频监控等领域具有重要的地位.针对目前存在的关键问题,如人体运动,相机运动,背景及形状、角度等变化对检测及跟踪带来的干扰,提出了一种将运动信息与形状信息相结合的行人检测方法,准确检测运动摄像机拍摄的直立运动人体;使用了基于小面积目标的跟踪算法进行人体跟踪;利用实际拍摄的视频序列进行算法验证.实验结果表明,混合检测算法速度快,准确率高;基于小面积的跟踪算法能够鲁棒的跟踪检测到的运动人体. 相似文献
14.
15.
16.
17.
18.
19.
This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model-based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multi-processing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. 相似文献