首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了硅烷偶联剂种类及其并用对炭黑/白炭黑增强丁腈橡胶(NBR)填料网络结构及动态性能的影响.结果表明,硅烷偶联剂双-[γ-(三乙氧基硅)丙基]四硫化物(Si 69)能有效降低炭黑/白炭黑增强NBR混炼胶的Payne效应,促进填料在橡胶基体中的分散,而硅烷偶联剂3-氨丙基三乙氧基硅烷(KH 550)或其与Si 69并用...  相似文献   

2.
In rubber nanocomposites containing inorganic clay, the reinforcement effect has always been relatively insignificant due to the poor interfacial interaction between the rubber matrix and clay fillers. In this work, the silane coupling agent bis[3‐(triethoxysilyl)propyl]tetrasulfide (Si‐69) was employed through mechanically blending with styrene butadiene rubber (SBR)/clay (100/30) nanocompound that was prepared by combined latex compounding and spray‐drying technique, to serve as the molecular bridge between SBR matrix and clay filler and strengthen the interfacial interaction. TEM and XRD characterization indicated that Si‐69 significantly improved the dispersion of the silicate layers in the SBR matrix. The RPA analysis and the mechanical property study of the SBR/clay nanocomposites revealed that the filler network interaction was weakened while the filler–rubber interaction was strengthened upon the addition of Si‐69. POLYM. COMPOS., 37:890–896, 2016. © 2014 Society of Plastics Engineers  相似文献   

3.
It is usually desired but often challenging to improve the wet traction, and reduce the abrasion and rolling resistance simultaneously in tread rubber, which is referred to as “magic triangle” in tire industry. To fulfill this goal, the filler dispersion and interfacial interaction required to be improved, as they are two essential factors to concurrently govern the ultimate properties of rubber composites. Herein, we synthesized the epoxidized solution polymerized styrene butadiene rubber (ESSBR) with different epoxy level, and used them as interfacial compatibilizer to promote the silica dispersion and silica/rubber interfacial interaction. The epoxy of ESSBR would react with silanol on silica surface and co-crosslink with SSBR simultaneously, therefore build a strong bridge between rubber matrix and filler. By incorporation of 20 phr of ESSBR-15% (15% of double bonds on main chain was epoxidized), the wet grip was improved by 40%, and DIN abrasion and rolling resistance were reduced by 38% and 21%, respectively with hardly sacrifice the mechanical properties. We envisage that this study provides an approach for the fabrication of rubber composites with improved silica dispersion and strengthened interfacial interaction.  相似文献   

4.
The recycling or reuse of waste rubber by means of blending together with polymeric materials in addition of filler such as hybrid carbon black and silica (CB/Sil) to a polymer system can provides an opportunity to explore alternative product specifications. Therefore, in this work the investigation of recycled rubber blends based on styrene butadiene rubber/recycled acrylonitrile butadiene rubber (SBR/NBRr) blends reinforced with 50/0, 40/10, 30/20, 20/30, 40/10, 0/50 phr of carbon black/silica (CB/Sil) hybrid filler treated with and without silane coupling agent (Si69) were determined. Cure characteristics, tensile properties, and morphological behavior of selected SBR/NBRr blends at a fix 85/15 blend ratio were evaluated. Results showed that, cure time t90, minimum torque (ML), and maximum torque (MH) of CB/Sil hybrid fillers filled SBR/NBRr blends with and without Si69 increased as silica content increased. However, t90 and ML of SBR/NBRr blends with Si69 were lower than without Si69 except for (MH). The optimum scorch time (ts2) of SBR/NBRr blends with and without Si69 was obtained at 30/20 phr of CB/Sil hybrid filler. However, ts2 of SBR/NBRr blends with Si69 were longer than SBR/NBRr blends without Si69. The incorporation of Si69 has improved the tensile properties [(tensile strength, elongation at break (Eb), stress at 100% elongation (M100), and stress at 300% elongation (M300)] of CB/Sil hybrid fillers filled SBR/NBRr blends. These properties were influenced by the degree of crosslinked density as the silica content is increased. Scanning electron microscopy (SEM) of the tensile fracture surfaces indicated that, with the addition of Si69 improved the dispersion of hybrid fillers and NBRr in SBR/NBRr matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Carbon nanotubes‐silica (CNTs‐SiO2) nanohybrid filler was fabricated by coating inorganic silica on multi‐wall CNTs through a sol–gel process. The CNTs‐SiO2 nanohybrids were then functionalized by 3‐methacryloxypropyltrimethoxysilane (3‐MPTS) followed by compounding to solution styrene butadiene rubber (S‐SBR) through mechanical mixing. The Fourier‐transform infrared spectroscopy showed that the CNTs were coated by inorganic SiO2, and grafted with 3‐MPTS successfully. The functionalized CNTs‐SiO2 nanohybrids had a rough surface as revealed by transmission electron microscope images. After hybridization and grafting, the functionalized CNTs‐SiO2 nanohybrids still maintained the crystal structure of CNTs, which was determined by X‐ray diffraction and Raman spectrum. The addition of nanohybrids accelerated the vulcanization process and improved the crosslinking degree of vulcanizates. With adding 10 phr (parts per hundred of rubber) functionalized CNTs‐SiO2, the mechanical properties of S‐SBR vulcanizates were improved significantly. The tensile moduli at 100% elongation (M100) and tensile strength had 54% and 28% increase, respectively. The incorporation of functionalized CNTs‐SiO2 nanohybrids also largely enhanced the storage modulus, and slightly increased the thermal conductivity of vulcanizates. POLYM. COMPOS., 00:000–000, 2013. © 2013 Society of Plastics Engineers POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
为了达到增强硅气凝胶力学性能的目的,采用硅烷偶联剂KH550与KH560二步改性接枝玻璃纤维,进而制备纤维增强硅气凝胶。利用扫描电子显微镜、红外光谱仪、比表面及孔径分布仪、热重-差热分析仪、导热系数仪、电子动静态疲劳试验机等对其表征。实验结果表明:硅烷偶联剂改性玻璃纤维与硅气凝胶复合后网络结构更加均匀、骨架强度更加稳定、孔径多在30 nm以下、具有良好的热稳定性;同时,改性玻璃纤维的最佳添加量为20%(质量分数),此时其密度为0.167 g/cm3,导热系数为0.018 5 W/(m·K),接触角为127°,抗弯强度为1.042 MPa,抗压强度为0.669 MPa,达到预期实验目的。  相似文献   

7.
用硅烷偶联剂(Si 69)改性炭黑-白炭黑双相粒子(CSDPF),研究了CSDPF的改性及用量对天然橡胶(NR)物理机械性能及填料-橡胶相互作用的影响。结果表明,随着CSDPF或改性CSDPF(mCSDPF)用量的增加,所填充硫化胶的物理机械性能均有所提高。在填充量相同的情况下,mCSDPF/NR硫化胶的物理机械性能更好。填充量为60份(质量,下同)时,与CSDPF/NR硫化胶相比,mCSDPF/NR硫化胶的拉伸强度增加14.57%,疲劳寿命提高40.74%,磨耗体积减小10.00%;填充量为40份时撕裂强度提高32.11%。mCSDPF与NR之间的相互作用更强。  相似文献   

8.
Nanocomposites of organophilic montmorillonite (C18‐MMT), nitrile–butadiene rubber (NBR), and a coupling agent were produced during a melt compounding process at room temperature. During the process, it was clearly observed that organo‐MMT particles were exfoliated into nanoscale layers of approximately 1–30 nm thickness, in addition to their original 40 μm thickness. These MMT layers were uniformly dispersed in the NBR matrix. The effects of a coupling agent such as 3‐(mercaptopropyl)trimethoxy silane in C18‐MMT/NBR nanocomposites were studied. The C18‐MMT/NBR nanocomposites in the presence of the coupling agent were identified and characterized by X‐ray diffraction, transmission electron microscopy, a universal testing machine, thermogravimetric analysis, and IR spectroscopy. It was observed that an additional silane coupling agent, 3‐(mercaptopropyl)trimethoxy silane, enhanced the chemical interaction and was accompanied by the formation of Si? O? Si coupling bonds between C18‐MMT and the coupling agent and Si? C coupling bonds between NBR and the coupling agent. This work resulted in improved properties of organo‐MMT/NBR nanocomposites because of the nanoscale effects and strong interaction of the coupling bonds between NBR and organo‐MMT. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2633–2640, 2003  相似文献   

9.
通过橡胶加工分析仪研究了分别添加偶联荆双(三乙氧基丙基硅烷)四硫化物(TESPT)、双(三乙氧基丙基硅烷)二硫化物(TESPD)、3-丙酰基硫代-1-丙基-三甲氧基硅烷(PXT)的白炭黑填充天然橡胶(NR)混炼胶的填料网络结构,考察了3种偶联剂对白炭黑填充NR混炼胶的门尼黏度及流变形为的影响.结果表明,3种偶联剂均使白炭黑填料网络化程度大幅度减轻,弹性模量和损耗模量变小,Payne效应大大减弱,增大了胶料的流动性,改善了加工性能;PXT与TESPT比TESPD更能有效地减轻填料的网络化程度.  相似文献   

10.
用硫化仪考察了橡胶助剂3-苯并噻唑硫代-1-丙基-三乙氧基硅烷(Silane-M)对丁苯橡胶/白炭黑复合材料硫化性能的影响.结果表明,Silane-M可明显缩短丁苯橡胶/白炭黑复合材料的正硫化时间,但不影响其焦烧时间.Silane-M具有一定的促进作用,可以加快硫化速率.未添加和添加6份(质量)Silane-M的丁苯橡胶/白炭黑复合材料在135~160 ℃的硫化温度系数和硫化反应表观活化能均比较接近,2种复合材料的硫化性能对温度的依赖性基本一致.  相似文献   

11.
Results of measurements of physical properties and solvent swelling of the extrudates indicate that epoxidised natural rubber (ENR) interacts chemically with precipitated silica when the mix of the two was extruded at 150–170°C in a Monsanto Processability Tester (MPT). The extent of interaction between the rubber and the filler depends on the extrusion time, the volume fraction of the filler, the shear rate and the addition of the silane coupling agent, namely N-3-(N-vinyl benzyl amino) ethyl-γ-amino propyl trimethoxy silane monohydrochloride. The activation energy of the chemical interaction between ENR and silica decreases on the addition of the silane coupling agent.  相似文献   

12.
硅烷偶联剂对玻纤/聚丙烯复合材料的影响   总被引:2,自引:0,他引:2  
靳志森 《玻璃》2011,38(6):23-25
分别选用KH550、KH570两种硅烷偶联剂处理无碱无捻粗纱,采用挤出、注塑成型技术制备玻纤增强聚丙烯复合材料,对复合材料进行了分析和研究。结果表明:硅烷偶联剂具有提高GF/PP复合材料性能的作用。SEM显示KH570处理GF与PP基体之间形成了良好的界面,界面层起到很好的应力传递作用,达到良好的增强效果。  相似文献   

13.
Results of Monsanto rheometic studies and measurements of physical properties reveal that precipitated silica interacts chemically with epoxidized natural rubber (ENR) during high temperature (180°C) molding and the extent of chemical interaction increases in the presence of silane coupling agent, namely N‐3(N‐vinyl benzyl amino) ethyl‐γ‐amino propyl trimethoxy silane monohydrogen chloride. Fourier transform infrared spectroscopic studies show that silica is bonded to ENR through formation of Si—O—C bond, whereas in the presence of silane coupling agent, silica is bonded to the coupling agent through Si—O—Si bond, and ENR is bonded to the coupling agent through C—N—C bond formation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 389–398, 1999  相似文献   

14.
方传杰  樊云峰  赵燕超 《橡胶科技》2019,17(3):0125-0131
介绍硅烷偶联剂在橡胶工业中的应用研究进展,展望橡胶用硅烷偶联剂的发展趋势和应用前景。硅烷偶联剂的使用大大提高了橡胶制品的综合性能,促进了无机填料在橡胶工业中的应用。目前橡胶用硅烷偶联剂主要种类为含硫烃基类、乙烯基类、甲基丙烯酰氧烷基类、氨烃基类和环氧烃基类。随着新型轮胎和橡胶制品的快速发展,市场对橡胶用硅烷偶联剂的性能和使用技术也提出更高的要求,尤其是轮胎绿色化进程的加快,对硅烷偶联剂的需求快速增长,以NXT为代表的新型硅烷偶联剂是未来橡胶用硅烷偶联剂的发展方向之一。  相似文献   

15.
从力学性能、动态压缩疲劳生热、动态力学性能等方面对比了分别由SnCl_4和SiCl_4偶联的溶聚丁苯橡胶(SSBR)与白炭黑所制备复合材料的性能,并利用测定结合橡胶含量、橡胶加工分析仪及Kraus模型等手段探讨了两种SSBR与白炭黑的相互作用。结果表明,与用SnCl_4偶联所制备的SSBR相比,经SiCl_4偶联制得的SSBR与白炭黑的相互作用力更强,白炭黑的分散性更好。所制备SSBR/白炭黑复合材料的力学性能更好,压缩温升更低,滚动阻力更小,抗湿滑性能更好。  相似文献   

16.
利用单官能团偶联剂六甲基二硅氮烷(HMDS)及双官能团偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)分别对纳米Si O2进行表面改性,制备了改性Si O2/甲基乙烯基硅橡胶(MVQ)复合材料,研究了2种偶联剂对Si O2的改性效果,表征了改性Si O2在MVQ中的分散状态,且考察了2种偶联剂对复合材料结合胶、动态力学性能、交联密度及拉伸性能的影响。结果表明,HMDS和KH-570都能实现对Si O2改性接枝,且2种改性Si O2具有相同的摩尔接枝率;HMDS改性Si O2分散于基体中,且存在一定量团聚体,而KH-570改性Si O2的分散性较好,部分达到原生粒子级分散,颗粒与基体相容性提高;低应变条件下,Si O2经改性后,复合材料的储能模量(G')和损耗因子(tanδ)下降,且KH-570改性体系的G'低于HMDS改性体系,而tanδ高于HMDS改性体系;在高应变条件下,未改性与改性Si O2/MVQ复合材料的G'趋于一致,而KH-570改性体系的tanδ低于HMDS改性体系;改性Si O2/MVQ复合材料具有更高的交联密度和拉伸性能,且KH-570改性体系的交联密度和拉伸性能均高于HMDS改性体系。  相似文献   

17.
研究了硅烷偶联剂双-[3-(三乙氧基硅)丙基]-四硫化物(Si 69)、双-[3-(三乙氧基硅)丙基]-二硫化物(Si 75)及3-辛酰基硫代-1-丙基三乙氧基硅烷(NXT)对丁苯橡胶/白炭黑复合材料的硫化胶在热空气老化过程中力学性能、应力弛豫、交联密度及喷霜现象的影响。结果表明,与未加偶联剂的胶料相比,加入Si 69、Si 75或NXT的溶聚丁苯橡胶/白炭黑硫化胶的力学性能、应力弛豫系数和交联密度都相应提高,其中在热空气老化过程中,应力弛豫系数随老化时间的延长而增大,并且随着老化时间的延长,NXT改性体系的应力弛豫行为逐渐弱于Si 69和Si 75改性体系。加入Si 69可以减小在热空气老化过程中复合材料交联密度的增长率,且增长率随Si 69用量的增加而减小。加入硅烷偶联剂可以减弱溶聚丁苯橡胶/白炭黑复合材料的喷霜现象,体系表面的喷出物主要为白炭黑。  相似文献   

18.
The effect of zinc sulfide (ZnS) nanoparticles in chlorinated styrene‐butadiene rubber (Cl‐SBR) was analyzed by X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), Differential Scanning Calorimetry, and impedance analyzer. The cure time, mechanical properties, and solvent transport of petroleum fuels through the Cl‐SBR/ZnS nanocomposites at different temperatures were evaluated. XRD and SEM studies showed that ZnS nanoparticles were well‐placed in the polymeric structure of Cl‐SBR. The increased glass transition temperature of the composite with the loading of nanoparticles indicated the increased molecular rigidity. Rheometric torque, alternating current conductivity, dielectric property, tensile strength, tear resistance, modulus, hardness, abrasion resistance, heat build‐up, and compression set were increased with the loading of nanoparticles, however, cure and scorch time, elongation at break, and resilience were reduced with the loading of nanoparticles. The diffusion results have been explained in terms of the size of liquid molecules and the diffusion mechanism was found to follow the anomalous trend. The activation energy for diffusion, sorption and permeation process was evaluated. These activation energy parameters were increased with the size of the penetrant molecules and also with the loading of nanoparticles. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46538.  相似文献   

19.
On the basis of results of measurements of physical properties and solvent swelling of the extrudates, it has been observed that epoxidized natural rubber (ENR) interacts chemically with intermediate super abrasion furnace (ISAF) carbon black when the mix of the two was extruded at 130–160°C in a Monsanto Processability Tester (MPT). The extent of interaction between the rubber and filler depends on the following factors: extrusion time, carbon black loading, shear rate, and the extent of oxidation on the carbon black surface. Addition of the silane coupling agent, namely, N‐3‐(‐N‐vinyl benzyl amino) ethyl‐γ‐amino propyl trimethoxy silane monohydrochloride, enhances the rate of the interaction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 557–563, 1999  相似文献   

20.
采用乳液共混与机械剪切法制备氧化石墨烯/白炭黑/丁苯橡胶纳米复合材料,并对其综合性能进行研究。结果表明:两种并用填料在橡胶基体中均能达到纳米级分散,且白炭黑粒子填补了氧化石墨烯片层间的空隙。氧化石墨烯的加入延长了复合材料的正硫化时间,改变了其交联密度。氧化石墨烯等量替代白炭黑,可以提高橡胶基体中填料的有效体积分数,改善复合材料的物理性能和动态力学性能。氧化石墨烯的加入使复合材料的耐磨性能显著提高。与白炭黑填充相比,氧化石墨烯/白炭黑填充复合材料的60℃时损耗因子有所降低,能进一步降低滚动阻力,但其0℃的损耗因子也呈现降低趋势,对复合材料抗湿滑性能不利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号