共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of Poly(2,3‐dimethylaniline) and inorganic Na+‐montmorillonite clay were synthesized by emulsion polymerization. The as‐synthesized composites (PDMA) were characterized by Fourier Transform Infrared Spectroscopy, X‐ray diffraction, and scanning electron microscopy. The protective performance against corrosion of the samples was evaluated by Tafel and electrochemical impedance spectroscopy measurements. The results showed that the composite containing 5 wt. % of clay loading (PDMA‐5%) displayed a better anticorrosive performance than other samples. The Epoxy(E) blend with PDMA‐5% (EPM5) coating was founded to have a higher corrosion potential and a lower current density than that of Epoxy blend P(2,3‐DMA) (EP) coating. The impedance value of EPM5 coating was about 6.68×106Ω·cm2 in 5 wt. % NaCl solution even after 288 h, compared to EP (4.26×105Ω·cm2) coating, which went to show that the corrosion inhibition of P(2,3‐DMA) could be effectively enhanced by incorporating MMT into the P(2,3‐DMA) matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4528–4533, 2013 相似文献
2.
In this study, poly(2,3‐dimethylaniline)/polyaniline (P(2,3‐DMA)/PANI) composite was prepared by in situ polymerization of aniline on the surface of P(2,3‐DMA) particles in hydrochloric acid solution. Fourier transform infrared spectra and X‐ray diffraction results of the composites indicated that P(2,3‐DMA) was successfully modified by PANI. The electrochemical activity and electrical conductivity of the P(2,3‐DMA)/PANI composite were discussed by cyclic voltammetry and standard four‐probe tests, respectively. The results showed that the conductivity of the composite increased with the increasing aniline concentration, which can expand the potential applications of P(2,3‐DMA), such as use in anti‐static coatings or electronic devices. The P(2,3‐DMA)/PANI composite also showed better solubility and anticorrosive property than PANI. POLYM. COMPOS., 36:1541–1545, 2015. © 2014 Society of Plastics Engineers 相似文献
3.
Poly(2,3‐dimethylaniline) (P(2,3‐DMA)) was synthesized chemically by using phosphoric acid (H3PO4) as protonic acid. The optimum ratio for n(H3PO4)/n(2,3‐DMA)/n(APS) was 2.5/1/2, and the optimum temperature was 30°C. The spectra of ultraviolet‐visible and infrared demonstrate that the structure of P(2,3‐DMA) was similar with polyaniline (PANI) except for the 2,3‐ortho‐substitute methyl. The result of X‐ray diffraction and solubility analysis indicate that owing to the 2,3‐ortho‐substitute benzene ring, the P(2,3‐DMA) has poorly partial crystallinity and better solubility. In addition, the anticorrosion property of P(2,3‐DMA) was better than PANI. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
4.
Fabrication of pH‐sensitive poly(2‐(diethylamino)ethyl methacrylate)/palygorskite composite microspheres via Pickering emulsion polymerization and their release behavior 下载免费PDF全文
The poly(2‐(diethylamino)ethyl methacrylate)/palygorskite (PDEAEMA/PAL) composite microspheres were prepared via Pickering emulsion polymerization using palygorskite (PAL) as an emulsifier. The morphology, chemical structure, and content of PDEAEMA/PAL composite microspheres were investigated by polarizing optical microscopy, scanning electron microscopy (SEM), Fourier‐transform infrared (FT‐IR) spectroscopy, and thermal gravimetric analysis (TGA). The pH‐responsive behavior of composite microspheres was studied by measuring their size at different pH values. Furthermore, their release behavior was investigated using rhodamine B (RhB) as a model molecule. It was proven that the release properties of RhB from PDEAEMA/PAL composite microspheres could be controlled by adjusting the pH values. The study of release kinetics found that Higuchi model was fit for RhB release from PDEAEMA/PAL composite microspheres at pH 5.0, 7.4, and 10.0. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42179. 相似文献
5.
Seeded preswelling emulsion polymerization was carried out by using monodispersed poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] particles as the seed, and styrene and butyl acrylate as the second‐stage monomers under different polymerization conditions, to obtain hemispherical polystyrene (PST)‐rich–P4VP‐rich microspheres. Prior to polymerization, toluene was added into the preswelling system together with the second‐stage monomers. It was found that, with the increase of the amount of toluene, the particle morphology showed a tendency toward desirable hemispherical structure, and the colloidal stability of composite latex was improved. When the weight ratio of toluene/seed latex was increased up to 7.5/40 (g/g), the stable hemispherical latex could be obtained. However, when toluene was not added, the coagulum formed on the wall of the reactor during polymerization, and the composite particles with multiple surface domains (such as sandwich‐like, popcorn‐like) were formed. In addition, the final morphology of composite particles was influenced by the polarity of the seed crosslinker and the hydrophilicity of the second‐stage initiator, which could affect the mobility of poly(styrene‐co‐butyl acrylate) [P(ST‐BA)] chains. The morphology development during the polymerization was investigated in detail, and a schematic model was derived to depict the formation mechanism of hemispherical P(4VP‐BA)/P(ST‐BA) composite microspheres. The results revealed that the mobility of the P(ST‐BA) chains influenced the diffusion of the P(ST‐BA) domains on the surface of the P(4VP‐BA) matrix. When the mobility of the P(ST‐BA) chains allowed small‐size P(ST‐BA) domains to coalesce into one larger domain, complete phase‐separated morphology (hemisphere) could be achieved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3811–3821, 2003 相似文献
6.
Organic–inorganic hybrid poly(styrene‐co‐butyl acrylate)/organically modified montmorillonite (PSBA/organo‐MMT) latex particles have been prepared by in situ emulsion polymerization. The effects of modifier variety and the level of organo‐MMT have been investigated on the basis of the characteristics and mechanical properties of the resulting hybrid emulsion polymers. Although the more hydrophilic intercalated organic modifiers increased the latex particle size, the hydrophobic ones decreased the particle size. A more heterogeneous copolymer chain intercalation was seen by widespread XRD reflection as the organo‐MMT (organoclay) level increases. The tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to determine the dispersion state of organoclay particles inside the nanocomposite copolymer films. Dynamic mechanical thermal analysis (DMTA) showed that adding the organoclay to the copolymer decreased the maximum loss tangent (tanδ) value and caused the shift to a lower temperature. Interestingly, the incorporation of organoclay decreased the glass storage modulus of the copolymer, while increased the rubbery storage modulus to some extent. In addition, a standard indenter for the nanoscratching of copolymer nanocomposite films was used under low applied loads of 150 and 250 μN. The nanoscratch results showed that incorporation of a 3 wt % hydrophobic organoclay, e.g., Closite15A, in the copolymer matrix enhanced considerably the near‐surface hardness and grooving resistance of the nanocomposite film at room temperature. In fact, copolymer nanocomposite films with higher near‐surface hardness and tanδ curve broadening exhibited more nanoscratch resistance through a specific variety of viscoelastic deformation, which did not create a bigger groove. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
7.
Poly(methyl methacrylate) (PMMA)/Titanium oxide (TiO2) composite particles were prepared via in‐situ emulsion polymerization of MMA in the presence of TiO2 particles. Before polymerization, the TiO2 particles was modified by the silane coupling agent, which is crucial to ensure that PMMA reacts with TiO2 via covalent bond bindings. The structure of the obtained PMMA/TiO2 composite particles was characterized using Fourier transform infrared spectra (FTIR) and thermogravimetric analysis (TGA). The results indicate that there are covalent bond bindings between PMMA macromolecules and TiO2 particles. Based on these facts, several factors affecting the resulting PMMA/TiO2 composite system, such as the type of coupling agents, the mass ratio of the MMA to the modified TiO2, the emulsifier concentration, and the initiator concentration, etc., were examined by the measurement of conversion of monomers, the gel content of polymers, the percentage of grafting, and the grafting efficiency, using gravity method or TGA method. As a result, the optimized recipe was achieved, and the percentage of grafting and the grafting efficiency could reach 216.86 and 96.64%, respectively. In addition, the obtained PMMA/TiO2 composite particles were found to a stable colloidal dispersion in good solvent for PMMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4056–4063, 2006 相似文献
8.
Poly(acrylonitrile‐co‐methyl acrylate)/clay nanocomposites were prepared by free radical polymerization in emulsion using 2‐acrylamido‐2‐methyl‐1‐propanesulphonic acid (AMPS) as a compatibilizer. The resultant nanocomposites were of partially exfoliated morphology despite the variations in clay content among the nanocomposites, as confirmed by transmission electron microscopy and small‐angle X‐ray scattering analysis. Rheological studies of these materials were carried out using parallel plate geometry. The storage modulus increased monotonically with increasing clay content throughout the frequency range studied. However, the neat copolymer, poly(acrylonitrile‐co‐methyl acrylate) and its nanocomposites, exhibited long relaxation behavior as the storage modulus (G′) was greater than the loss modulus (G″) throughout the angular frequency range studied. The complex viscosity of the nanocomposites increased with increasing clay content and they exhibited shear‐thinning behavior. Despite the enhanced rheological properties observed, the copolymer and its nanocomposites underwent structural changes during oscillatory measurements due to cyclization reactions. POLYM. COMPOS., 32:59–66, 2011. © 2010 Society of Plastics Engineers 相似文献
9.
Li Zhang Ruxangul Jamal Qin Zhao Yu Zhang Mingchao Wang Tursun Abdiryim 《Polymer Composites》2016,37(9):2884-2896
In this study, the poly(3,4‐propylenedioxythiophene)/SnO2 nanocomposites (PProDOT/SnO2) with different contents of SnO2 were successfully prepared by using hand grinding and ball milling methods, respectively. The effects of the synthesis methods and SnO2 on the structure and electrochemical properties of the nanocomposites were deeply discussed. The results showed the structure of composites were highly affected by the increasing amount of nano‐SnO2 particles in reaction medium of hand grinding method than ball milling method. And, the PProDOT/SnO2 nanocomposites from ball milling method displayed similar absorption spectra, and ball milling method promoted the uniform distribution of nano‐SnO2 particles in PProDOT matrix. However, PProDOT/SnO2 nanocomposites from hand grinding method displayed the higher specific surface area and stronger synergetic effects between PProDOT and SnO2 than that of PProDOT/SnO2 nanocomposites from ball milling method. As a result, the PProDOT/SnO2 nanocomposites from hand grinding method showed higher electrochemical activity than PProDOT/SnO2 nanocomposites from ball milling method. Moreover, the specific capacitance and cycle stability of PProDOT/SnO2 nanocomposites from both methods were higher than respective pure PProDOT. Among all the nanocomposites, PProDOT/15wt%SnO2 nanocomposite from hand grinding method possessed the highest specific capacitance (259 F g−1) with the best cycle performance (capacitance retention of 82% after 1,000 cycles). POLYM. COMPOS., 37:2884–2896, 2016. © 2015 Society of Plastics Engineers 相似文献
10.
Poly (acrylonitrile‐butadiene‐styrene) (ABS) was used to modify diglycidyl ether of bisphenol‐A type of epoxy resin, and the modified epoxy resin was used as the matrix for making TiO2 reinforced nanocomposites and were cured with diaminodiphenyl sulfone for superior mechanical and thermal properties. The hybrid nanocomposites were characterized by using thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), universal testing machine (UTM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The bulk morphology was carefully analyzed by SEM and TEM and was supported by other techniques. DMA studies revealed that the DDS‐cured epoxy/ABS/TiO2 hybrid composites systems have two Tgs corresponding to epoxy and ABS rich phases and have better load bearing capacity with the addition of TiO2 particles. The addition of TiO2 induces a significant increase in tensile properties, impact strength, and fracture toughness with respect to neat blend matrix. Tensile toughness reveals a twofold increase with the addition of 0.7 wt % TiO2 filler in the blend matrix with respect to neat blend. SEM micrographs of fractured surfaces establish a synergetic effect of both ABS and TiO2 components in the epoxy matrix. The phenomenon such us cavitation, crack path deflection, crack pinning, ductile tearing of the thermoplastic, and local plastic deformation of the matrix with some minor agglomerates of TiO2 are observed. However, between these agglomerates, the particles are separated well and are distributed homogeneously within the polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
11.
A novel biocompatible composite of poly(ε‐caprolactone) (PCL) was synthesized via in situ ring‐opening polymerization method of ε‐caprolactone in the presence of reduced graphene oxide (RGO). Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) studies support a strong interaction between PCL and RGO. The crystallization behavior and thermal stability of these composites were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Honeycomb‐patterned thin films with regular structures were fabricated by casting the composite solution under humid conditions. The temperature‐dependent DC conductivity of the honeycomb‐patterned composite films was studied in the range of 290−330 K, which revealed a semiconducting behavior in the transport properties of the composite films. DC conductivity of the patterned films was increased by increasing the concentration of RGO in the composites and in the increased temperature. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers 相似文献
12.
Koh‐Hei Nitta Takenori Kawada Valery V. Prokhorov Mikio Yamahiro Hideharu Mori Minoru Terano 《应用聚合物科学杂志》1999,74(4):958-964
The morphology and mechanical properties of novel block copolymers consisting of isotactic polypropylene (PP) and ethylene–propylene rubber (EPR) synthesized by a short‐period polymerization method were examined using differential scanning calorimetry, atomic force microscopy, dynamic mechanical analysis, and a rheooptical technique. It was found that the novel block copolymers show a single glass transition and EPR segments are trapped into the amorphous region of PP. Furthermore, the rheooptical analysis demonstrates that a drawing process of the EPR‐rich block copolymer induces orientation of the PP lamellae in the EPR matrix. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 958–964, 1999 相似文献
13.
A series of polybutylmethacrylate/organo‐attapulgite (PBMA/organo‐APT) nanocomposites were prepared by suspended emulsion polymerization using ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and organo‐APT treated by different quaternary ammonium salt (C12, C16, and C18) as an inorganic component. The nanocomposites were characterized by means of Fourier transform infrared spectroscopy and scanning electron microscopy (SEM), showing that organo‐APT participated in polymerization by which a nanocomposite structure was formed. The effects of crosslinker and organo‐APT with different alkyl chain length on oil absorbency were investigated. The swelling kinetics in toluene, chloroform and gasoline were also systematically studied. The results reveal that introducing organo‐APT with moderate hydrophobic‐chain length into the PBMA polymeric network can improve oil absorption capability and swelling rate. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers 相似文献
14.
Poly (silicone‐co‐acrylate)/montmorillonite nanocomposite emulsion were prepared by in situ intercalative emulsion polymerization of acrylate and organosilicone, in the presence of organic modified montmorillonite (OMMT) with different OMMT contents (0, 0.5, 1, 1.5, and 2 wt %). The nanocomposite emulsions were characterized with X‐ray diffraction (XRD), laser light scattering, fourier transform infrared (FTIR), rheological measurements, surface tension, drying speed, and water absorption property. Results showed that OMMT could improve the properties of emulsion, in other words, the properties of nanocomposite emulsion were better when compared with those of the silicone–acrylate emulsion. The properties of nanocomposite emulsion containing 1 wt % OMMT was the best one, and obtained the following advantages: smaller particle size, faster drying speed, shorter curing time, smaller surface tension, bigger apparent viscosity, and improved resistant water by the incorporation of OMMT. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3963–3970, 2006 相似文献
15.
We report the preparation of polyacrylate‐core/TiO2‐shell nanocomposite particles through in situ emulsion polymerization in the presence of nano‐TiO2 colloid obtained by the hydrolysis of titanium tetrachloride. The resultant colloidal system can be stable for months without any precipitation. In a typical sample, the diameter of nanocomposite particles was about 150 nm, and the thickness of TiO2‐shell was 4–10 nm. Only cetyltrimethylammonium bromide was employed to provide the latex particles with positive charge, which was enough for the formation of fine TiO2 coatings. Three initiators were tested. Ammonia persulfate was the most suitable one, because the cooperative effect was formed by the negatively charged TiO2 particles and the terminal anionic group (SO42?, the fraction of Ammonia persulfate) of the polymer chain on the surface of latex particles to maintain the stability of nanocomposite system. The pH value played a vital role in obtaining a tight TiO2 coating. Transmission electron microscopy, X‐ray diffraction and Atomic force microscopy were used to characterize this nanocomposite material. It was found that rutile and anatase coexisted in the nanocomposite film. This may suggest a potential application in the field of photocatalytic coating. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1466–1470, 2006 相似文献
16.
In this article, Fe‐montmorillonite (Fe‐MMT) was synthesized by hydrothermal method. For the first time, Fe‐MMT was modified by cetyltrimethyl ammonium bromide (CTAB), and poly(methyl methacrylate)(PMMA)/Fe‐MMT nanocomposites were synthesized by emulsion polymerization. Then poly(methyl methacrylate)(PMMA)/natural montmorillonite (Na‐MMT) and PMMA/Fe‐MMT nanocomposites were compared by Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD) patterns, transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). By XRD and TEM, it was found out that the morphology of PMMA/Fe‐MMT nanocomposites was different from that of the PMMA/Fe‐MMT nanocomposites when the content of two types of clay was same in the PMMA matrix. It was possible that the presence of iron may lead to some radical trapping, which enhances intragallery polymerization to be developed to improve layer dispersion in PMMA/Fe‐MMT systems. In TGA curves, the thermal stability and residue at 600°C of PMMA/Fe‐MMT nanocomposites were higher than those of PMMA/Na‐MMT nanocomposites. Those dissimilarities were probably caused by structural Fe ion in the lattice of Fe‐MMT. POLYM. COMPOS., 27:49–54, 2006. © 2005 Society of Plastics Engineers 相似文献
17.
Poly(2‐chloroaniline)/silica (P2ClAn)/SiO2 nanocomposites have been chemically prepared by oxidative polymerization of 2‐chloroaniline in acidic medium containing SiO2. The prepared composites were characterized by FTIR, UV–vis, TGA, XRD, SEM, ESEM, conductivity, and magnetic susceptibility. The incorporation of P2ClAn in composites was endorsed by FTIR studies. The effect of the solution concentration of P2ClAn and P2ClAn/SiO2 prepared in protonated, deprotonated, and reprotonated structures on the UV–vis spectra was investigated into three different solvents (DMF, NMP, and H2SO4). In all forms, the oxidation state of P2ClAn and P2ClAn/SiO2 composite increased with increasing concentration of the testing solution into H2SO4. Thermogravimetric study exhibited that the composite has a higher thermal stability than P2ClAn. XRD measurement of the composite revealed that the crystal structure of incorporated SiO2 undergone a distortion and converted into amorphous. Thus, the XRD pattern of P2ClAn was predominant. SEM analysis results revealed interesting morphological features for the composites converted to different forms and confirmed the formation of monodispersed composite particles. ESEM image of P2ClAn/SiO2 has particle diameter of less than 1 μm. The conductivity of P2ClAn and P2ClAn/SiO2 was measured by four‐probe technique. Magnetic susceptibility measurements revealed that the composite has a paramagnetic properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:935–943, 2006 相似文献
18.
Sonyeo Jeon Jumi Yun Young-Seak Lee Hyung-Il Kim 《Journal of Industrial and Engineering Chemistry》2012,18(1):487-491
The composite nanofibers of poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAAc)/titanium(IV) oxide (TiO2) were prepared by electrospinning for a novel photocatalytic treatment of waste water. To improve the photoelectronic properties of PVA/PAAc/TiO2 composite nanofibers, carbon nanotubes (CNTs) were used as an additive. The TiO2 and CNTs were immobilized in the PVA/PAAc hydrogels as electrospun nanofibers for an easier recovery after the wastewater treatment. The improved efficiency of pollutant dye removal was observed at pH 10 due to the pH-sensitive swelling behavior of the PVA/PAAc/TiO2/CNTs composite nanofibers. The photocatalytic activity of TiO2 was improved noticeably by applying electric field to the CNTs-embedded composite nanofibers. 相似文献
19.
The effect of graphite oxide (GO) as the enforcing filler on the properties of poly(?‐caprolactone) (PCL) was investigated in this study. Through the introduction of GO, the Young's modulus of PCL was increased from 340 to 1000 MPa, and the tensile strength of PCL was increased from 15 to 26 MPa. Furthermore, the interlayer distance of GO (0.6 nm) was found to expand to 1.1 nm in the PCL/GO composite, which indicated the intercalation of the PCL chain into the GO layers. Because of this intercalation structure of the PCL/GO composite, GO showed a higher reinforcing effect than graphite on the mechanical properties of PCL. The intercalation should have enabled much effective load transfer in the PCL/GO composites. Moreover, GO showed a nucleating effect toward the crystallization of PCL, as the nonisothermal crystallization peak temperature shifted from 25°C for pure PCL to about 34°C for the PCL/GO composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
20.
The physical properties found during the swelling process of poly(2‐hydroxyethyl methacrylate) (PHEMA) and of copolymers of HEMA with mono‐n‐methyl itaconate, synthesized by solution and bulk polymerization, are reported. The swelling kinetics were followed at four different temperatures (295, 300, 305 and 310 K). Experimental data follow second‐order swelling kinetics, from where the kinetic rate constant k∞ and the swelling capacity at equilibrium W∞ were calculated as a function of temperature. The kinetic rate constant obeys Arrhenius behaviour. The following network parameters were determined for the hydrogels: Young's moduli E, effective crosslinking density ve, molar mass per crosslink MC, volume fraction ϕ2 and polymer‐liquid interaction parameter χ. © 2000 Society of Chemical Industry 相似文献