首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The influence of the solar spectrum is investigated to estimate the outdoor short circuit current (Isc) of various photovoltaic (PV) modules. It is well known that the solar spectrum always changes. Hence, it is rare to fit the standard solar spectrum AM1·5G defined in standard IEC 60904‐3. In addition, the spectral response (SR) of PV module is different depending on the material. For example, crystal silicon (c‐Si) has broad sensitivity that the wavelength range is between 350 and 1150 nm; meanwhile, amorphous silicon (a‐Si) has relatively narrow sensitivity comparing to c‐Si. Since Isc of the PV module decides by multiplying the solar spectrum and SR together, it is necessary to investigate the solar spectrum to estimate the outdoor Isc in addition to the solar irradiance and module temperature. In this study, the spectral mismatch is calculated and the outdoor Isc is estimated in the whole year. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The performance of six photovoltaic (PV) modules composed of polycrystalline silicon (pc‐Si), amorphous silicon (a‐Si), and hydrogenated amorphous silicon/crystalline silicon (a‐Si:H/c‐Si) modules was investigated at eight locations in Japan from August 2007 to December 2008. In addition, solar irradiance, solar spectrum, and module temperature were simultaneously measured in these round‐robin measurements. In this study, we evaluate quantitatively the effects of module temperature and solar spectrum on the performance of the PV modules as thermal factor (TF) and spectral factor (SF), respectively. Furthermore, we investigate the variation in module performance, which is converted into module performance under standard test conditions (STC) using the TF and SF. In the case of the pc‐Si modules, the variations in performance ratio under STC (PRSTC) for these modules range from 0.056 to 0.074 through the round‐robin measurements. The TF indicates that the contribution of module temperature to the variation in performance is large, between about 15 and 20%. However, the SF suggests that the contribution of solar spectrum is quite small, less than 3%. In the case of the a‐Si modules, the contribution of module temperature is about 8%. The performance is largely influenced by solar spectrum, more than 12% at its maximum. Consequently, the variations in the corrected PRSTC of the a‐Si modules are between 0.117 and 0.141. These large variations may result from the effects of thermal annealing and light soaking. The variation in PRSTC of the a‐Si:H/c‐Si module is similar to that of the pc‐Si modules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Solar PV is widely considered as a “green” technology. This paper, however, investigates the environmental impact of the production of solar modules made from thin‐film silicon. We focus on novel applications of nano‐crystalline Silicon materials (nc‐Si) into current amorphous Silicon (a‐Si) devices. Two nc‐Si specific details concerning the environmental performance can be identified, when we want to compare to a‐Si modules. First, in how far the extra (and thicker) silicon layer (s) affects upstream material requirements and energy use. Second, in how far depositing an extra silicon layer may increase emissions of greenhouse gases as additional emissions of Fluor gases (F‐gases) are associated to this step. The much larger global warming potential of F‐gases (17 200–22 800 times that of CO2) may lead to higher environmental burdens. To date, no study has yet analyzed the effect of F‐gas usage on the environmental profile of thin‐film silicon solar modules. We performed a life‐cycle assessment (LCA) to investigate the current environmental usefulness of pursuing this novel micromorph concept. The switch to the new micromorph technology will result in a 60–85% increase in greenhouse gas emissions (per generated kWh solar electricity) in case of NF3 based clean processing, and 15–100% when SF6 is used. We conclude that F‐gas usage has a substantial environmental impact on both module types, in particular the micromorph one. Also, micromorph module efficiencies need to be improved from the current 8–9% (stabilized efficiency) toward 12–16% (stab. eff.) in order to compensate for the increased environmental impacts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
One way to improve the spectral response of solar cells in the ultraviolet (UV) region is to convert high energy photons into lower energy ones via luminescent down‐shifting (LDS) technique. Eu3+ complexes are excellent LDS species because of their high luminescence quantum efficiency and large Stokes‐shift. In this paper, we aim to optimize the LDS property of Eu3+ complexes for monocrystalline silicon (c‐Si) photovoltaic (PV) modules by chemical modification of the UV absorbing antenna ligands. Our results show that the LDS performances of Eu3+ complexes are strongly dependent on their absorption and emission properties. By carefully modifying the absorption and emission features, the LDS performances of Eu3+ complexes can be significantly improved. The spectroscopic features of the Eu3+ complex with a bispinene‐containing bipyridyl ligand match well with the requirement of ideal LDS species for the c‐Si PV module. Simple coating of polyvinyl acetate film doped with this complex onto the surface of c‐Si PV module leads to increase of the external quantum efficiency in the UV region and enhancement of the PV module efficiency η (from 16.05% to 16.37%). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The short‐wavelength response of cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaic (PV) modules can be improved by the application of a luminescent down‐shifting (LDS) layer to the PV module. The LDS layer contains a mixture of fluorescent organic dyes that are able to absorb short‐wavelength light of λ < 540 nm, for which the PV module exhibited low external quantum efficiency (EQE), and re‐emit it at a longer wavelength (λ > 540 nm), where the solar cell EQE is high. Ray‐tracing simulations indicate that a mixed LDS layer containing three dyes could lead to an increase in the short‐circuit current density from Jsc = 19.8 mA/cm2 to Jsc = 22.9 mA/cm2 for a CdS/CdTe PV module. This corresponds to an increase in conversion efficiency from 9.6% to 11.2%. This indicates that a relative increase in the performance of a production CdS/CdTe PV module of nearly 17% can be expected via the application of LDS layers, possibly without any making any alterations to the solar cell itself. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
New generation photovoltaic (PV) devices such as polymer and dye sensitized solar cells (DSC) have now reached a more mature stage of development, and among their various applications, building integrated PVs seems to have the most promising future, especially for DSC devices. This new generation technology has attracted an increasing interest because of its low cost due to the use of cheap printable materials and simple manufacturing techniques, easy production, and relatively high efficiency. As for the more consolidated PV technologies, DSCs need to be tested in real operating conditions and their performance compared with other PV technologies to put into evidence the real potential. This work presents the results of a 3 months outdoor monitoring activity performed on a DSC mini‐panel made by the Dyepower Consortium, positioned on a south oriented vertical plane together with a double junction amorphous silicon (a‐Si) device and a multi‐crystalline silicon (m‐Si) device at the ESTER station of the University of Rome Tor Vergata. Good performance of the DSC mini‐panel has been observed for this particular configuration, where the DSC energy production compares favorably with that of a‐Si and m‐Si especially at high solar angles of incidence confirming the suitability of this technology for the integration into building facades. This assumption is confirmed by the energy produced per nominal watt‐peak for the duration of the measurement campaign by the DSC that is 12% higher than that by a‐Si and only 3% lower than that by m‐Si for these operating conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The strong growth of the PV market is accompanied by an increasing number of “new” PV technologies and concepts now mature for commercialization. A correct calibration of these devices is in some cases very difficult, because indoor and outdoor performance measurements often lead to different results. In this paper we compare the indoor and outdoor performance measurements of a set of recent commercially available PV modules (conventional and high‐efficiency c‐Si, single‐, double‐, and triple‐junction thin film (TF) technologies) and we observe that the maximum power Pmax of some devices measured indoors using our large area pulsed solar simulator is usually lower than the power measured outdoors under natural sunlight. The major effects which lead to these discrepancies are identified, as follows: (a) spectral mismatch errors, very significant for CdTe, and all a‐Si TF technologies; (b) measurement‐related sweep‐time effects, which seem to strongly influence the performance of high efficiency c‐Si devices and to a lesser extend of all a‐Si TF technologies; and (c) short‐time light‐soaking effects, which influence the performance of CIS and to a lesser extent CdTe. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents an environmental life cycle assessment of a roof‐integrated flexible solar cell laminate with tandem solar cells composed of amorphous silicon/nanocrystalline silicon (a‐Si/nc‐Si). The a‐Si/nc‐Si cells are considered to have 10% conversion efficiency. Their expected service life is 20 years. The production scale considered is 100 MWp per year. A comparison of the a‐Si/nc‐Si photovoltaic (PV) system with the roof‐mounted multicrystalline silicon (multi‐Si) PV system is also presented. For both PV systems, application in the Netherlands with an annual insolation of 1000 kWh/m2 is considered. We found that the overall damage scores of the a‐Si/nc‐Si PV system and the multi‐Si PV system are 0.012 and 0.010 Ecopoints/kWh, respectively. For both PV systems, the impacts due to climate change, human toxicity, particulate matter formation, and fossil resources depletion together contribute to 96% of the overall damage scores. Each of both PV systems has a cumulative primary energy demand of 1.4 MJ/kWh. The cumulative primary energy demand of the a‐Si/nc‐Si PV system has an uncertainty of up to 41%. For the a‐Si/nc‐Si PV system, an energy payback time of 2.3 years is derived. The construction for roof integration, the silicon deposition, and etching are found to be the largest contributors to the primary energy demand of the a‐Si/nc‐Si PV system, whereas encapsulation and the construction for roof integration are the largest contributors to its impact on climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
We have developed a new light‐trapping scheme for a thin‐film Si stacked module (Si HYBRID PULS module), where a (a‐Si:H/transparent interlayer/microcrystalline Si) thin‐film was integrated into a large‐area solar cell module. An initial aperture efficiency of 13·1% has been achieved for a 910 × 455 mm Si HYBRID PLUS module, which was independently confirmed by AIST. This is the first report of the independently confirmed efficiency of a large‐area thin‐film Si module with an interlayer. The 19% increase of short‐circuit current of this module was obtained by the introduction of a transparent interlayer that caused internal light‐trapping. A mini‐module was shown to exhibit a stabilized efficiency of 12%. Outdoor performance of a Si HYBRID (a‐Si:H / micro‐crystalline Si stacked) solar cell module has been investigated for over 4 years with two different kinds of module (top and bottom cell limited, respectively). The HYBRID modules limited by the top cell have exhibited a more efficient performance than the modules limited by the bottom cell, in natural sunlight at noon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
An alternative and cost‐effective solution to building integrated PV systems is to use hybrid photovoltaic/thermal (PV/T) solar systems. These systems consist of PV modules with an air channel at their rear surface, where ambient air is circulating in the channel for PV cooling and the extracted heat can be used for building thermal needs. To increase the system thermal efficiency, additional glazing is necessary, but this results in the decrease of the PV module electrical output from the additional optical losses of the solar radiation. PV/T solar systems with air heat extraction have been extensively studied at the University of Patras. Prototypes in their standard form and also with low‐cost modifications have been tested, aiming to achieve improved PV/T systems. An energetic and environmental assessment for the PV and PV/T systems tested has been performed by the University of Rome ‘La Sapienza’, implementing the specific software SimaPro 5·1 regarding the life‐cycle assessment (LCA) methodology applied. In this paper electrical and thermal energy output results for PV and PV/T systems are given, focusing on their performance improvements and environmental impact, considering their construction and operation requirements. The new outcome of the study was that the glazed type PV/T systems present optimum performance regarding energy, cost and LCA results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The direct and indirect emissions associated with photovoltaic (PV) electricity generation are evaluated, focussing on greenhouse gas (GHG) emissions related to crystalline silicon (c‐Si) solar module production. Electricity supply technologies used in the entire PV production chain are found to be most influential. Emissions associated with only the electricity‐input in the production of PV vary as much as 0–200 g CO2‐eq per kWh electricity generated by PV. This wide range results because of specific supply technologies one may assume to provide the electricity‐input in PV production, i.e., whether coal‐, gas‐, wind‐, or PV‐power facilities in the “background” provide the electricity supply for powering the entire PV production chain. The heat input in the entire PV production chain, for which mainly the combustion of natural gas is assumed, adds another ∼16 CO2‐eq/kWh. The GHG emissions directly attributed to c‐Si PV technology alone constitute only ∼1–2 g CO2‐eq/kWh. The difference in scale indicates the relevance of reporting “indirect” emissions due to energy input in PV production separately from “direct” emissions particular to PV technology. In this article, we also demonstrate the utilization of “direct” and “indirect” shares of emissions for the calculation of GHG emissions in simplified world electricity‐ and PV‐market development scenarios. Results underscore very large GHG mitigation realized by solar PV toward increasingly significant PV market shares. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A unique non‐destructive characterization method for apparent bandgap imaging in photovoltaic (PV) devices based on acquisition of two electroluminescence (EL) images in different spectral ranges is presented. The method consists of a calibration procedure and a bandgap imaging procedure. Calibration has to be performed once per module type and EL imaging setup, and must provide a relation between the bandgap and the ratio between two spectrally independent EL images. After calibration, bandgap imaging only requires acquisition of two spectrally independent EL images followed by image processing, making the method very fast and suitable for in‐line PV module characterization with regard to spatial (in)homogeneity and production process stability. The method is demonstrated on a commercial state‐of‐the‐art Cu(In,Ga)Se2 PV module where apparent bandgap fluctuations between 1.07 and 1.15 eV are detected. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The low cost and high quality of multicrystalline silicon (mc‐Si) based on directional solidification has become the main stream in photovoltaic (PV) industry. The mc‐Si quality affects directly the conversion efficiency of solar cells, and thus, it is crucial to the cost of PV electricity. With the breakthrough of crystal growth technology, the so‐called high‐performance mc‐Si has increased about 1% in solar cell efficiency from 16.6% in 2011 to 17.6% in 2012 based on the whole ingot performance. In this paper, we report our development of this high‐performance mc‐Si. The key ideas behind this technology for defect control are discussed. With the high‐performance mc‐Si, we have achieved an average efficiency of near 17.8% and an open‐circuit voltage (Voc) of 633 mV in production. The distribution of cell efficiency was rather narrow, and low‐efficiency cells (<17%) were also very few. The power of the 60‐cell module using the high‐efficiency cells could reach 261 W as well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Here, bottom‐up nanofabrication for the two‐dimensional self‐organization of a highly integrated, well‐defined silicon nanowire (SiNW) mesh on a naturally‐patterned Si(110)–16 × 2 surface by controlling the lateral growths of two non‐orthogonal 16 × 2 domains is reported. This self‐ordered nanomesh consists of two crossed arrays of parallel‐aligned SiNWs with nearly identical widths of 1.8–2.5 nm and pitches of 5.0–5.9 nm, and is formed over a mesoscopic area of 300 × 270 nm2 so as to show a high integration density in excess of 104 µm?2. These crossed SiNWs exhibit semiconducting character with an equal band gap of ~0.95 eV as well as unique quantum confinement effect. Such an ultrahigh‐density SiNW network can serve as a versatile nanotemplate for nanofabrication and nanointegration of the highly‐integrated metal‐silicide or molecular crossbar nanomesh on Si(110) surface for a broad range of device applications. Also, the multi‐layer, vertically‐stacked SiNW networks can be self‐assembled through hierarchical growth, which opens the possibility for creating three‐dimensionally interconnected crossbar circuits. The ability to self‐organize an ultrahigh‐density, functional SiNW network on a Si(110) surface represents a simple step toward the fabrication of highly‐integrated crossbar nanocircuits in a very straightforward, fast, cost‐effective, and high throughput process.  相似文献   

15.
Recently, installation of photovoltaic power systems such as building‐integrated photovoltaic in urban area has been spotlighted in renewable energy engineering field, even at the expense of the performance degradation from partial shading. The efficiency degradation of maximum power point tracking (MPPT) performance can be compensated by a kind of power‐conditioning system architecture such as module‐integrated converters (MIC), which can handle the optimal‐operation tracking for its own photovoltaic (PV) module. In case of a MIC with series‐connected outputs, it is easy to obtain a high DC‐link voltage for multiple stage PV power conditioning applications. However, switching ripple of the DC‐link voltage also increases as number of the modules increases. In this paper, as a solution for the ripple reduction, interleaved pulse width modulation‐phase synchronizing method is applied to the PV MIC modules. The switching‐ripple analysis of the MPPT power modules were performed and compared between the cases such as phase control or not. For the implementation of the phase control among the modules, Zigbee (XBee Pro, Digi International, Minnetonka, MN, USA) wireless communications transceiver and DSP (TMS320F28335, Texas Instruments, Dallas, TX, USA) series communications interface are utilized. Hardware prototype of the double‐module boost‐type 80‐W MICs has been built to validate the DC‐link voltage ripple reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The use of modular or ‘micro’ maximum power point tracking (MPPT) converters at module level in series association, commercially known as “power optimizers”, allows the individual adaptation of each panel to the load, solving part of the problems related to partial shadows and different tilt and/or orientation angles of the photovoltaic (PV) modules. This is particularly relevant in building integrated PV systems. This paper presents useful behavioural analytical studies of cascade MPPT converters and evaluation test results of a prototype developed under a Spanish national research project. On the one hand, this work focuses on the development of new useful expressions which can be used to identify the behaviour of individual MPPT converters applied to each module and connected in series, in a typical grid‐connected PV system. On the other hand, a novel characterization method of MPPT converters is developed, and experimental results of the prototype are obtained: when individual partial shading is applied, and they are connected in a typical grid connected PV array. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This study is dedicated to the temperature (T)‐variation of the photovoltaic performances of solar cells made from solar‐grade silicon directly purified by metallurgical route (SoGM‐Si). Experimental results were systematically compared with those for standard electronic‐grade silicon (EG‐Si) solar cells. We showed that the conversion efficiency (η) of SoGM‐Si cells decreases much less when T increases than the η of EG‐Si cells. This major difference is due to a strong increase with T of the short‐circuit current density (Jsc) of the SoGM‐Si solar cells. We showed that this a priori unexpected result could be described and explained by numerical simulations, by taking into account the main particularities of SoGM‐Si: dopant compensation, moderate minority carrier diffusion length and larger amount of boron–oxygen complexes. These results are significant since T of a solar module under illumination being generally higher than 25°C, modules made from low‐cost SoGM‐Si cells should have performances closer to those of standard EG‐Si solar panels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Plasma treatment (PT) of the buffer layer for highly H2‐diluted hydrogenated amorphous silicon (a‐Si:H) absorption layers is proposed as a technique to improve efficiency and mitigate light‐induced degradation (LID) in a‐Si:H thin film solar modules. The method was verified for a‐Si:H single‐junction and a‐Si:H/microcrystalline silicon (µc‐Si:H) tandem modules with a size of 200 × 200 mm2 (aperture area of 382.5 cm2) under long‐term light exposure. H2 PT at the p/i interface was found to eliminate non‐radiative recombination centers in the buffer layer, and plasma‐enhanced chemical vapor deposition at low radio‐frequency power was found to suppress the generation of defects during the growth of a‐Si:H absorption layers on the treated buffer layers. With optimized H2 PT of the a‐Si:H single‐junction module, the stabilized short circuit current and fill factor increased, and the stabilized open circuit voltage moves beyond its initial value. The results demonstrate 7.7% stabilized efficiency and 10.5% LID for the a‐Si:H single‐junction module and 10.82% stabilized efficiency and 7.76% LID for the a‐Si:H/µc‐Si:H tandem module. Thus, the growth of an a‐Si:H absorption layer on a H2 PT buffer layer can be considered as a practical method for producing high‐performance Si thin film modules. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This work describes a method developed for estimating the energy delivered by building integrated photovoltaics systems operating under non‐standard conditions of irradiance and temperature. The method is based on calculation of the maximum power (PGmax) supplied by the modules array as a function of irradiance and ambient temperature, achieved by simulating its I–V and P–V curves using an algorithm which needs only the performance parameters supplied by the manufacturers. The energy generated by the PV system is estimated from monthly average values of PGmax calculated for using monthly average values of ambient temperature and irradiance obtained from data measured during 2 years. The method is applied to crystalline Si modules and tested by comparing the simulated I–V and P–V curves with those obtained by outdoor measurements as well as for comparing the energy produced during the years 2009 and 2010 with a 3.6 kWp building integrated photovoltaics system installed at the Universidad Nacional located in the city of Bogotá, Colombia, at 4°35′ latitude and 2.580 m altitude. The contrast of the simulated I–V and P–V curves for two different types of commercial Si‐modules with those experimentally obtained under real conditions indicated that the simulation method is reliably. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a compact, energy‐efficient, and smart gas sensor platform technology for ubiquitous sensor network (USN) applications. The compact design of the platform is realized by employing silicon‐on‐insulator (SOI) technology. The sensing element is fully integrated with SOI CMOS circuits for signal processing and communication. Also, the micro‐hotplate operates at high temperatures with extremely low power consumption, which is important for USN applications. ZnO nanowires are synthesized onto the micro‐hotplate by a simple hydrothermal process and are patterned by a lift‐off to form the gas sensor. The sensor was operated at 200°C and showed a good response to 100 ppb NO2 gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号