首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(methy methacrylate) (PMMA)‐SiO2 nanoparticles were prepared via differential microemulsion polymerization. The effects of silica loading, surfactant concentration, and initiator concentration on monomer conversion, particle size, particle size distribution, grafting efficiency, and silica encapsulation efficiency were investigated. A high monomer conversion of 99.9% and PMMA‐SiO2 nanoparticles with a size range of 30 to 50 nm were obtained at a low surfactant concentration of 5.34 wt% based on monomer. PMMA‐SiO2 nanoparticles showed spherical particles with a core‐shell morphology by TEM micrographs. A nanocomposite membrane from natural rubber (NR) and PMMA‐SiO2 emulsion was studied for mechanical and thermal properties and pervaporation of water‐ethanol mixtures. PMMA‐SiO2 nanoparticles which were uniformly dispersed in NR matrix, significantly enhanced mechanical properties and showed high water selectivity in permeate flux. Thus, the NR/PMMA‐SiO2 hybrid membranes have great potential for pervaporation process in membrane applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

2.
微滴乳液聚合制备PDMS/SiO2纳米复合材料   总被引:1,自引:1,他引:0       下载免费PDF全文
杨磊  许湧深  邱守季  张娅 《化工学报》2013,64(4):1473-1477
采用超声分散的方法,以少量八甲基环四硅氧烷(D4)对硅溶胶粒子进行表面接枝改性。然后在改性硅溶胶存在下,以十二烷基苯磺酸(DBSA)为乳化剂兼催化剂进行D4的微滴乳液聚合,得到聚硅氧烷(PDMS)/二氧化硅(SiO2)纳米复合乳液。采用FTIR、TGA、纳米粒度仪、TEM和拉力机分别对样品进行了表征。结果表明:采用超声分散的方法,能够有效地实现硅溶胶粒子的表面改性。通过微滴乳液聚合得到的复合乳胶粒是聚合物包覆二氧化硅粒子的核壳结构形态。SiO2的引入提高了有机硅复合膜力学性能,增强了热稳定性。  相似文献   

3.
Polymethyl methacrylate (PMMA) was introduced onto the surface of silica nanoparticles by particle pretreatment using silane coupling agent (γ‐methacryloxypropyl trimethoxy silane, KH570) followed by solution polymerization. The modified silica nanoparticles were characterized by Fourier‐transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Sedimentation tests and lipophilic degree (LD) measurements were also performed to observe the compatibility between the modified silica nanoparticles and organic solvents. Thereafter, the PMMA slices reinforced by silica‐nanoparticle were prepared by in situ bulk polymerization using modified silica nanoparticles accompanied with an initiator. The resultant polymers were characterized by UV–vis, Sclerometer, differential scanning calorimetry (DSC). The mechanical properties of the hybrid materials were measured. The results showed that the glass transition temperature, surface hardness, flexural strength as well as impact strength of the silica‐nanoparticle reinforced PMMA slices were improved. Moreover, the tensile properties of PMMA films doped with silica nanoparticles via solution blending were enhanced. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Both silica/polystyrene (SiO2/PS) and silica/polystyrene‐b‐polymethacryloxypropyltrimethoxysilane (SiO2/PS‐b‐PMPTS) hybrid nanoparticles were synthesized via surface‐initiated atom transfer radical polymerization (SI‐ATRP) from SiO2 nanoparticles. The growths of all polymers via ATRP from the SiO2 surfaces were well controlled as demonstrated by the macromolecular characteristics of the grafted chains. Their wettabilities were measured and compared by water contact angle (WCA) and surface roughness. The results show that the nanoparticles possess hydrophobic surface properties. The static WCA of SiO2/PS‐b‐PMPTS hybrid nanoparticles is smaller than that of SiO2/PS hybrid nanoparticles, meanwhile, the surface roughness of SiO2/PS‐b‐PMPTS hybrid nanoparticles is yet slightly rougher than that of SiO2/PS hybrid nanoparticles, which shows that the combination and competition of surface chemistry and roughness of a solid material can finally determine its wettability. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

5.
Summary Polyethylene-poly(methylmethacrylate) (PE-PMMA) polymer hybrid was synthesized via RAFT polymerization of MMA with PE chain transfer agent (PE-CTA) for the first time. The structure of PE-CTA produced by sequential functionalization of terminally hydroxylated PE was confirmed by 1H NMR and FT-IR analyses. The results of GPC after MMA polymerization revealed that the molecular weight (Mw) of the resulting polymers increased compared with the one of the PE-CTA. 1H NMR analysis of resulting polymers confirmed that the amounts of PMMA segments were in a range of 7.8 and 23 wt %. TEM images indicated the nanometer level microphase-separation morphology between the PE segment and PMMA segment.  相似文献   

6.
Micron PMMA microspheres which had PVP-g-PMMA graft polymers on the surface were prepared via a dispersion polymerization method by using the PVP K-30 as the dispersant. Because of the PVP-g-PMMA graft polymers, SiO2 nanoparticles were successfully introduced to the PMMA microsphere’s surface through the TEOS hydrolysis method. SEM and other tests suggested micron-sized PMMA/SiO2 composite microspheres were successfully synthesized. SiO2 nanoparticles could grow on the PMMA microspheres, probably because SiO2 was attracted chemically to the carbonyl bonds on the PVP molecules.  相似文献   

7.
Abstract

The early stages of the reversible addition/fragmentation transfer (RAFT) miniemulsion polymerization were simulated, focusing on the effect of the RAFT agent on droplet nucleation. For highly reactive RAFT agents, a large number of free radicals (Nc ) needed to be captured by a droplet in order to initiate polymerization in the droplet, which was totally different from the behavior of regular miniemulsion polymerization. More interestingly, it was found that droplet size had a significant influence on Nc value. It was shown that the RAFT agent has a significant influence on miniemulsion polymerization, leading to long induction periods and retardation of polymerization. In addition, miniemulsion droplets with different sizes are nucleated at different times, which could lead to very low nucleation efficiency. The results would be very helpful in understanding and designing a RAFT miniemulsion polymerization system.  相似文献   

8.
Xiaodong Zhou  Zhangqing Yu 《Polymer》2007,48(21):6262-6271
In this study, we have conducted the reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in two heterogeneous systems, i.e. conventional emulsion and miniemulsion, with identical reaction conditions. The main objective is to compare the living character in both systems according to the nucleation mechanism, the latex stability, the particle sizes and particle size distributions of latexes, the molecular weights and molecular weight distributions (or polydispersity index, PDI) of PMMA, and the kinetics of the RAFT polymerization. The RAFT agent used in both systems was 2-cyanoprop-2-yl dithiobenzoate (CPDB). The effects of an oil-soluble initiator 2,2′-azobisisobutyronitrile (AIBN) and a water-soluble initiator kalium persulfate (KPS) on the RAFT/emulsion and RAFT/miniemulsion polymerizations were investigated. Methyl-β-cyclodextrin (Me-β-CD) was used as a solubilizer. The average molecular weights and molecular weight distributions (PDIs) of dried PMMA samples were characterized by gel permeation chromatography (GPC). The experimental results showed that the RAFT/miniemulsion polymerization of MMA exhibited better living character than that of RAFT/emulsion polymerization under the conditions of our experiment. The PDI of PMMA in RAFT/miniemulsion polymerization was decreased with the addition of Me-β-CD. However, Me-β-CD did not have influence on the PDI of PMMA prepared in RAFT/emulsion polymerization.  相似文献   

9.
The homogenous nanocomposite films of UV/O3 oxidized multiwall carbon nanotubes (MWCNTs) subsequently modified with aniline moiety were synthesized with polymethylmethacrylate (PMMA) through free radical polymerization. The phenylamine functional groups present on the surface of MWCNTs providing an anchoring sites for deposition of Ag metal nanoparticles (NP).The in situ free radical polymerization of MMA in the presence of these well dispersed nanotubes gave a new class of radiation resistant nanocomposite films. The synthesized materials were characterized by FT‐IR, TGA, TEM, EDX, TC, DMA, universal testing machine, and optical microscopy to ascertain their structural morphologies, thermal stability, and mechanical strength. The microscopic and structural properties reflect the homogenous mixing of modified MWCNTs in polymer matrix contributing in enhancement of thermal stability, thermo‐mechanical strength, glass transition temperatures, and thermal conductivity of nanocomposites even at 0.25 wt% addition of modified nanofiller. Thermal and thermo‐mechanical behavior of pre‐ and post‐UV/O3 irradiated nanocomposite films have been compared with neat polymer. The results revealed that modified nanofiller network can effectively disperse the radiation and has a dramatic reinforcement effect on the nature of degradation of PMMA matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
Atom transfer radical polymerization (ATRP) is a promising method to synthesize well‐defined polymer/inorganic nanoparticles. However, the surface‐initiated ATRP from commercially mass produced inorganic nanoparticles has seldom been studied. In this study, the surface‐initiated ATRP of methylmethacrylate (MMA) from commercially mass produced fumed silica (SiO2) nanoparticles was investigated. Unlike the ATRP of MMA initiated from a free initiator, the controllability of ATRP of MMA from the surface of fumed silica nanoparticles was much better using ligand 2,2'‐bipyridine (bpy) than N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) as the initiator was immobilized on the surface of the SiO2 nanoparticles and the presence of the SiO2 nanoparticles made the CuCl/bpy catalyst system a homogeneous catalyst system and CuCl/PMDETA a heterogeneous one. The appropriate molar ratio of monomer and initiator was essential for preparing controlled PMMA/SiO2 nanoparticles. The entire process of ATRP of MMA from the surface of SiO2 nanoparticles was controllable when using bpy as ligand, xylene as solvent and with a monomer to initiator ratio of 300:1. The 1H NMR results indicated that the PMMA on the surface of the SiO2 was prepared via ATRP initiated from 4‐(chloromethyl)phenyltrimethoxysilane. The well‐defined PMMA/SiO2 nanoparticles obtained have good thermal stability and are well dispersed in organic media as proved by TGA, dynamic light scattering and transmission electron microscopy. © 2013 Society of Chemical Industry  相似文献   

11.
Well-defined poly(methyl methacrylate)-silica nanocomposites were produced by “grafting through” using reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of silica nanoparticle was modified covalently by attaching methacryl group to the surface using 3-methacryloxypropyldimethylchlorosilane. Polymerization of methyl methacrylate (MMA) using the 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid RAFT agent, produced the PMMA-SiO2 nanocomposites. Characterization of these well-defined nanocomposites included FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and dynamic mechanical analysis. These results show that the Tg values are higher and the mechanical strength of the PMMA-SiO2 nanocomposites is slightly improved when compared to bulk PMMA. Further, the molecular weight of the PMMA (up to Mn = 100,000) is controlled and the SiO2 are well dispersed in the PMMA matrix.  相似文献   

12.
Hybrid materials, which combine properties of organic–inorganic materials, are of profound interest owing to their unexpected synergistically derived properties and are considered as innovative advanced materials promising new applications in many fields such as optics, electronics, ionics and mechanics. Inorganic fillers are added to polymers in order to increase some of the properties of the compounds. These hybrid polymeric materials are replacing the pristine polymers due to their higher strength and stiffness. In the present work, studies concerning the preparation of poly (methylmethacrylate) [PMMA] and the nanocomposites PMMA/SiO2, PMMA/TiO2 are reported. These nanocomposite polymers were synthesized by means of free radical polymerization of methylmethacrylate, further “sol–gel” transformation‐based hydrolysis and condensation of corresponding alkoxide was used to prepare the inorganic phase during the polymerization process of MMA. Electrolytes were synthesized based on these nanocomposite polymers and have shown superior properties as compared to conventional polymer electrolytes. The nanocomposites and the nanocomposite polymer electrolytes (NPEs) with different lithium salts were investigated through an array of techniques including FTIR and calorimetry along with the electrochemical and rheological techniques. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Amphiphilic heteroarm star‐shaped polymers have important theoretical and practical significance. In this work, amphiphilic heteroarm star‐shaped polymer was synthesized by the use of polyfunctional chain transfer agent via sequential free radical polymerization in two steps. First, conventional free radical polymerization of methyl methacrylate (MMA) initiated by 2,2′‐azobis (isobutyronitrile) (AIBN) was carried out in the presence of polyfunctional chain transfer agent, pentaerythritol‐tertrakis (3‐mercaptopropinate) (PETMP). At appropriate monomer conversion, about two‐arm s‐PMMA having two residual thiol groups at the chain center was obtained. Second, the s‐PMMA obtained above was used as macro‐chain‐transfer agent for free radical polymerization of acrylic acid (AA). The heteroarm star‐shaped polymer with the hydrophobic PMMA segment and the hydrophilic PAA segment was obtained. The successful synthesis of heteroarm star‐shaped polymers, (PMMA)2(AA)2, was confirmed by 1H‐NMR and its self‐assembly behavior in different solvents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Cu2+ can oxidize amines to generate radicals to initiate radical polymerization of electron‐deficient monomers under mild conditions. Here, CuSO4‐catalyzed redox‐initiated radical polymerizations of methyl methacrylate from amino‐functionalized TiO2 nanoparticles (TiO2‐NH2 nanoparticles) was performed to prepare TiO2 nanoparticles grafted with poly(methyl methacrylate) (TiO2g‐PMMA hybrid nanoparticles) in dimethylsulfoxide or N,N‐dimethylformamide at 90°C. Infrared spectroscopy, thermogravimetric analysis, and X‐ray photoelectron spectroscopy confirmed the presence of the grafted PMMA and the grafting yield was about 50 wt%. Microscopy and particle‐size analysis indicated that TiO2g‐PMMA nanoparticles had a good affinity to organic media. Because only aminyl radical (? NH?) on TiO2 nanoparticles formed in Cu2+‐amine redox‐initiation step, there was no free PMMA chains formed during polymerization. Thus, our protocol provides a facile strategy to prepare inorganic/organic hybrid nanoparticles via one‐pot Cu2+‐amine redox‐initiated free radical polymerization. POLYM. ENG. SCI., 55:735–744, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
In this article, polymethacrylic acid/Na-montmorillonite/SiO2 nanoparticle (PMAA/Na-MMT/SiO2) composites were prepared via in situ polymerization. Fourier transform infrared spectroscopy (FTIR) indicated that the polymerization of SiO2 nanoparticle and MAA have been taken place. X-ray diffraction (XRD) results suggest that Na-MMT layers are exfoliated during the polymerization process. As evidenced by the transmission electron microscopy (TEM), the Na-MMT layers and SiO2 nanoparticles exhibit good dispersion in the polymer matrix. It was found that the PMAA/Na-MMT/SiO2 composite exhibit considerably enhanced thermal properties compared with the PMAA/Na-MMT.  相似文献   

16.
Poly(vinyl chloride) (PVC)/SiO2 nanocomposites were prepared via melt mixture using a twin‐screw mixing method. To improve the dispersion degree of the nanoparticles and endow the compatibility between polymeric matrix and nanosilica, SiO2 surface was grafted with polymethyl methacrylate (PMMA). The interfacial adhesion was enhanced with filling the resulting PMMA‐grafted‐SiO2 hybrid nanoparticles characterized by scanning electron microscopy. Both storage modulus and glass transition temperature of prepared nanocomposites measured by dynamic mechanical thermal analysis were increased compared with untreated nanosilica‐treated PVC composite. A much more efficient transfer of stresses was permitted from the polymer matrix to the hybrid silica nanoparticles. The filling of the hybrid nanoparticles caused the improved mechanical properties (tensile strength, notched impact strength, and rigidity) when the filler content was not more than 3 wt %. Permeability rates of O2 and H2O through films of PMMA‐grafted‐SiO2/PVC were also measured. Lower rates were observed when compared with that of neat PVC. This was attributed to the more tortuous path which must be covered by the gas molecules, since SiO2 nanoparticles are considered impenetrable by gas molecules. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
In this article, a new type of soluble polyester/silica (PE/SiO2) hybrid was prepared by the ultrasonic irradiation process. Surface modification of SiO2 was conducted using coupling agent γ‐glycidyloxypropyltrimethoxysilane (GOTMS) under ultrasonic irradiation. The structures of the modified hybrid nanocomposites were identified with a Fourier‐transform infrared spectroscopy (FT‐IR), whereas the size of the SiO2 in PE was characterized with a scanning electron microscope (SEM). SEM results indicated the formation and dispersion of nanometer scale size of inorganic domains inside the PE matrix due to the introduction of modified SiO2 and the interactions between organic and inorganic phases. The size of SiO2 particles in the modified system was about 25 nm. The transmission electron microscope (TEM) analysis showing the well‐dispersed nanosized titania nanoparticles (NPs). The densities and solubilities of the PE/SiO2 hybrids were also measured. Furthermore, thermal stability, residual solvent in the membrane film, and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA). Moreover, their mechanical properties were also characterized. It can be observed that the Young's moduli (E) of the hybrid films increase linearly with the silica content. The results obtained from gas permeation experiments showed that adding SiO2 to the PE membrane structure increased the permeability of the membranes. POLYM. ENG. SCI., 59:E237–E247, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
Lei Yang  Bogeng Li 《Polymer》2006,47(2):751-762
The RAFT polymerization of styrene in miniemulsion using 1-phenylethyl phenyl-dithioacetate (PEPDTA) as a RAFT agent was investigated, in attempt to reveal the mechanism for the often observed inferior performance such as low polymerization rate, broad molecular weight distribution and particle size distribution in the RAFT miniemulsion polymerization with regular levels of surfactant and co-stabilizer (1 wt% sodium dodecyl sulfate and 2 wt% hexadecane). It is strongly evident that a few of large oligomer particles consisting of oligomer, RAFT agent (RAFT agent refers to the original RAFT agent), and monomer would be formed in the early stage of the polymerization due to the superswelling of the first nucleated droplets. With the regular levels of surfactant and co-stabilizer, the observed low polymerization rate, broadened molecular weight distribution, slow conversion of the RAFT agent, lower Np, and broadened particle size distribution could be well explained by the formation of these large oligomer particles and their prolonged existence. When the formation of the oligomer particles was suppressed by increasing surfactant and co-stabilizer levels and wise selection of types of RAFT agent, the molecular weight distribution could be narrowed to around 1.3 and particle size distribution could be close to that of the conventional non-living miniemulsion polymerization.  相似文献   

19.
In this work, nanocomposites (Ncs) from Pd nanoparticles and TiO2 (Pd-Nps-TiO2) were supported on a polystyrene matrix (PS). Chemical liquid deposition, solvated metal atom dispersion and in situ polymerization were used in order to synthesize these Ncs. Colloid and nanocomposite characterization were performed by TEM, SEM, EDX, SAED and TGA. TEM analysis revealed a particle size of 7 nm for Coll-Styrene and 11 nm for Pd-Nps supported on TiO2 after radical polymerization. SAED showed phases corresponding to both metallic Pd and TiO2 anatase in the polymeric matrix. Molecular weight (MW) was determined by viscosimetric method. MW varies according to the initiator concentration and nanoparticle amount used for polymerization. The amount of nanoparticles increased the decomposition temperature of the Ncs by 10 °C, improving the thermal stability of these hybrid materials. Photoacoustic properties were evaluated in order to determine the effect of nanoparticles on thermal diffusivity (α) inside the matrix. Significant values of (α) were found for Ncs with Pd-Nps in contrast to PS and Pd/TiO2 Ncs. Structural aspects and colloidal aggregation of Ncs were also studied.  相似文献   

20.
Encapsulation of inorganic nanoparticles (as a core) by polymers (as a shell) is one of the interesting research subjects that lead to the synthesis of nanocomposite. These materials include properties of not only the organic polymer (e.g. optical properties, toughness, processability, flexibility, etc.) but also the inorganic nanoparticles (e.g. mechanical strength, thermal stability, etc.). Some of the applied preparative methods are dry-spray, dispersion, suspension, emulsion and miniemulsion polymerization techniques. Here, miniemulsion polymerization technique was used in order to obtain white-color nanocomposite latex particles containing nano-alumina (40–47 nm) encapsulated by copoly [styrene (St)–methyl methacrylate (MMA)] under high-shear ultrasonic irradiation. At first, bare nano-alumina was encapsulated with the copolymer to obtain latex particles. In another attempt and in order to investigate the effect of compatiblizing system, alumina nanoparticles were coated with oleic acid in order to form modified alumina core. Then miniemulsion polymerization was performed in the minidroplets including modified alumina, St and MMA for obtaining core/shell nanocomposite particles. The progress of encapsulation polymerization was followed by different instrumental techniques such as FT-IR spectra, thermal gravimetric analysis, dynamic light scattering, induced-coupled plasma, TEM and SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号