首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon solar cells that feature screen printed front contacts and a passivated rear surface with local contacts allow higher efficiencies compared to present industrial solar cells that exhibit a full area rear side metallization. If thermal oxidation is used for the rear surface passivation, the final annealing step in the processing sequence is crucial. On the one hand, this post‐metallization annealing (PMA) step is required for decreasing the surface recombination velocity (SRV) at the aluminum‐coated oxide‐passivated rear surface. On the other hand, PMA can negatively affect the screen printed front side metallization leading to a lower fill factor. This work separately analyzes the impact of PMA on both, the screen printed front metallization and the oxide‐passivated rear surface. Measuring dark and illuminated IV‐curves of standard industrial aluminum back surface field (Al‐BSF) silicon solar cells reveals the impact of PMA on the front metallization, while measuring the effective minority carrier lifetime of symmetric lifetime samples provides information about the rear side SRV. One‐dimensional simulations are used for predicting the cell performance according to the contributions from both, the front metallization and the rear oxide‐passivation for different PMA temperatures and durations. The simulation also includes recombination at the local rear contacts. An optimized PMA process is presented according to the simulations and is experimentally verified. The optimized process is applied to silicon solar cells with a screen printed front side metallization and an oxide‐passivated rear surface. Efficiencies up to 18.1% are achieved on 148.8 cm2 Czochralski (Cz) silicon wafers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper shows that one second (1 s) firing of Si solar cells with screen‐printed Al on the back and SiN x anti‐reflection coating on the front can produce a high quality Al‐doped back‐surface‐field (Al‐BSF) and significantly enhance SiN x ‐induced defect hydrogenation in the bulk Si. Open‐circuit voltage, internal quantum efficiency measurements, and cross‐sectional scanning electron microscopy pictures on float‐zone silicon cells revealed that 1 s firing in rapid thermal processing at 750°C produces just as good a BSF as 60 s firing, indicating that the quality of Al‐BSF region is not a strong function of RTP firing time at 750°C. Analysis of edge‐defined film‐fed grown (EFG) Si cells showed that short‐term firing is much more effective in improving the hydrogen passivation of bulk defects in EFG Si. Average minority‐carrier lifetime in EFG wafers improved from ∼3 to ∼33 μs by 60 s firing but reached as high as 95μs with 1 s firing, resulting in 15·6% efficient screen‐printed cells on EFG Si. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Metal aerosol jet printing is a new non‐contact direct‐write technique for the front side metallization of highly efficient industrial silicon solar cells. With this technique the first layer of a two‐layer contact structure is created. It features a low contact resistance and good mechanical adhesion to the silicon surface. The second layer is formed by light‐induced silver plating (LIP) to increase the line conductivity. To form the first layer a metal‐containing aerosol is created in the printer and focused via a second surrounding gas stream through a nozzle and deposited onto the substrate. The focussing gas avoids the contact between the aerosol and the nozzle tip. In addition, line widths significantly smaller than the outlet diameter of the nozzle tip can be reached. Fine and continuous lines with a width of 14 µm were printed using a metal organic ink. As the adhesion of these layers was not sufficient, a commercially available screen‐printing paste for solar cell metallization was modified and tested. Monocrystalline silicon solar cells of 12·5 cm × 12·5 cm with an aluminum back surface field were processed, achieving energy conversion efficiencies up to 17·8%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The influence of the thickness of silicon solar cells has been investigated using neighbouring multicrystalline silicon wafers with thickness ranging from 150 to 325 μm. For silicon solar cell structures with a high minority‐carrier diffusion length one expects that Jsc would decrease as the wafer becomes thinner due to a shorter optical path length. It was found experimentally that Jsc is nearly independent of the thickness of the solar cell, even when the minority‐carrier diffusion length is about 300 μm. This indicates that the Al rear metallisation acts as a good back surface reflector. A decrease in Jsc is observed only if the wafer thickness becomes less than about 200 μm. The observed trend in Voc as a function of the wafer thickness has been explained with PC1D modelling by a minority‐carrier diffusion length in the Al‐oped BSF which is small in relation to the thickness of the BSF. This effectively increases the recombination velocity at the rear of the cell. We have shown that the efficiency of solar cells made with standard industrial processing is hardly reduced by reducing the wafer thickness. Solar cell efficiencies might be increased by better rear surface passivation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
降低单晶硅原材料成本,采用更薄的硅片作为太阳电池的原料是晶体硅太阳电池产业发展的趋势之一。对薄片化的太阳电池,铝背场的背表面钝化工艺显得愈加重要。采用PC1D太阳电池软件模拟的方法,对以商业用p型硅为衬底的单晶硅125×125太阳电池的铝背场的背表面钝化技术进行了模拟,分析得出,对一定厚度的电池片来说,尤其是当少数载流...  相似文献   

6.
Co‐optimization of the metallization and emitter dopant profile is fully investigated for selective emitter crystalline silicon solar cells. The simulation parameters for the laser doping selective emitter, metallization by plating, silicon nitride passivation, and aluminum back surface field are identified and reached. Internal light flux reflection is also considered in the model. In particular, the influence of the increased light trapping ability of a textured surface on the optimization results is clarified by comparing a cell with a non‐textured surface. In this paper, the optimization results, including the electrical performances of a solar cell are discussed in detail. On the basis of these simulation results, an optimized metallization and emitter dopant profile is proposed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Aluminum oxide films can provide excellent surface passivation on both p‐type and n‐type surfaces of silicon wafers and solar cells. Even though radio frequency magnetron sputtering is capable of depositing aluminum oxide with concentrations of negative charges comparable to some of the other deposition methods, the surface passivation has not been as good. In this paper, we compare the composition and bonding of aluminum oxide deposited by thermal atomic layer deposition and sputtering, and find that the interfacial silicon oxide layer and hydrogen concentration can explain the differences in the surface passivation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Various measurements and experiments are performed to establish the mechanism of passivation on emitter and base of conventionally manufactured solar cell with p‐type base. The surface coatings on the emitter are removed. The bare surface is then coated with silicon (Si) nanoparticles (NPs) with oxygen termination. It shows an increase in the cell efficiency up to 14% over bare surface of solar cell. The NPs show enhancement in light scattering from the surface, but shows an increase in the recombination lifetime indicating an improved passivation. When back contact is partially removed, the coating on bare back side ( p‐type) of the solar cell also improves the cell efficiency. This is also attributable to the increased recombination lifetime from the measurements. Same NPs are seen to degrade the surface of n and p‐type Si wafers. This apparently contradictory behaviour is explained by studying and comparing the emitter (n‐type) surface of the solar cell with that of n‐type Si wafer and the back surface ( p‐type) with that of p‐type Si wafer. The emitter surface is distinctly different from the n‐type wafer because of the shallow p–n junction causing the surface depletion. Back surface has aluminium (Al) metal trace, which plays an important role in forming complexes with the oxygen‐terminated Si NPs (Si–O NPs). With these studies, it is observed that increase in the efficiency can potentially reduce the thermal budget in solar cell preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Traditional boron‐doped Czochralski‐grown Si solar cells are known to suffer from light‐induced degradation (LID). By replacing B with Ga as the dopant in the Cz melt or by reducing the oxygen content by implementing the magnetic‐Cz (MCz) growth technique, not only can LID be eliminated, but also higher efficiency manufacturable screen‐printed cells can be achieved. The use of thinner wafers for cell fabrication can significantly reduce the impact of LID on conventional boron‐doped Cz cells. Knowledge of the degraded cell parameters can be used to determine the optimal thickness for the highest stabilized efficiency. A methodology is developed to maximize the stabilized efficiency after LID by using thinner wafers. A combination of device modeling and experimental data is used to demonstrate that, for traditional B‐doped Cz Si, which degraded from 75 to 20 μs, the optimum cell thickness is in the range of 150–190 μm for a back‐surface recombination velocity of ∼104 cm/s. This cell design reduces the material cost and the absolute efficiency degradation from 0.75% (375 μm device) to 0.24% (157 μm device) and gives the highest stabilized Cz cell efficiency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, the back surface field (BSF) formation of locally alloyed Al‐paste contacts employed in recent industrial passivated emitter and rear cell solar cell designs is discussed. A predictive model for resulting local BSF thickness and doping profile is proposed that is based on the time‐dependent Si distribution in the molten Al paste during the firing step. Diffusion of Si in liquid Al away from the contact points is identified as the main differentiator to a full‐area Al‐BSF; therefore, a diffusion‐based solution to the involved differential equation is pursued. Data on the Si distribution in the Al and the resulting BSF structures are experimentally obtained by firing samples with different metal contact geometries, peak temperature times and pastes as well as by investigating them by means of scanning electron microscopy and energy dispersive X‐ray spectroscopy. The Si diffusivity in the Al paste is then calculated from these results. It is found that the diffusivity is strongly dependent on the paste composition. Furthermore, the local BSF doping profiles and thicknesses resulting from different contact geometries and paste parameters are calculated from the Si concentration at the contact sites, the diffusivity and solubility data. These profiles are then used in a finite element device simulator to evaluate their performance on solar cell level. With this approach, a beneficial paste composition for any given rear contact geometry can be determined. Two line widths are investigated, and the effects of the different paste properties are discussed in the light of the solar cell results obtained by simulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The screen‐printing method is an economical metallization technique used by most manufacturers of conventional silicon solar cells. This method limits the cells' use under concentrated light owing to high series resistance losses caused, among other reasons, by low metal density in the fingers. This paper describes increasing the finger metal density by electrolytic deposition. The electrolytic deposition of silver is an economical, controllable and readily commercializable deposition method to reduce the front and back metallization series resistance contributions. With an optimized grid design, compatible with 1 sun silicon cell technology, and later electrolytic silver deposition we have obtained cells that maintain their efficiency up to 15 suns. In addition, an analysis of the performance of these cells under uniform and non‐uniform illumination were carried out on n+p and n+pn+ structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Spontaneous photoemission of crystalline silicon provides information on excess charge carrier density and thereby on electronic properties such as charge carrier recombination lifetime and series resistance. This paper is dedicated to separating bulk recombination from surface recombination in silicon solar cells and wafers by exploiting reabsorption of spontaneously emitted photons. The approach is based on a comparison between luminescence images acquired with different optical short pass filters and a comprehensive mathematical model. An algorithm to separate both front and back surface recombination velocities and minority carrier diffusion length from photoluminescence (PL) images on silicon wafers is introduced. This algorithm can likewise be used to simultaneously determine back surface recombination velocity and minority carrier diffusion length in the base of a standard crystalline silicon solar cell from electroluminescence (EL) images. The proposed method is successfully tested experimentally. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We have passivated boron‐doped, low‐resistivity crystalline silicon wafers on both sides by a layer of intrinsic, amorphous silicon (a‐Si:H). Local aluminum contacts were subsequently evaporated through a shadow mask. Annealing at 210°C in air dissolved the a‐Si:H underneath the Al layer and reduces the contact resistivity from above 1 Ω cm2 to 14·9 m Ω cm2. The average surface recombination velocity is 124 cm/s for the annealed samples with 6% metallization fraction. In contrast to the metallized regions, no structural change is observed in the non‐metallized regions of the annealed a‐Si:H film, which has a recombination velocity of 48 cm/s before and after annealing. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Rapid and potentially low‐cost process techniques are analyzed and successfully applied towards the fabrication of high‐efficiency mono‐ and multicrystalline Si solar cells. First, a novel dielectric passivation scheme (formed by stacking a plasma silicon nitride film on top of a rapid thermal oxide layer) is developed that serves as antireflection coating and reduces the surface recombination velocity (Seff) of the 1˙3 Ω‐cm p‐Si surface to approximately 10 cm/s. The essential feature of the stack passivation scheme is its ability to withstand short 700 – 850°C anneal treatments used to fire screen printed (SP) contacts, without degradation in Soeff. The stack also lowers the emitter saturation current density (Joe) of 40 and 90 Ω/□ emitters by a factor of three and 10, respectively, compared to no passivation. Next, rapid emitter formation is accomplished by diffusion under tungsten halogen lamps in both belt line and rapid thermal processing (RTP) systems (instead of in a conventional infrared furnace) . Third, a combination of SP aluminium and RTP is used to form an excellent back surface field (BSF) in 2 min to achieve an effective back surface recombination velocity (Seff) of 200 cm/s on 2˙3 Ω‐cm Si. Finally, the above individual processes are integrated to achieve: (1) >19% efficient solar cells with emitter and Al‐BSF formed by RTP and contacts formed by vacuum evaporation and photolithography, (2) 17% efficient manufacturable cells with emitter and Al‐BSF formed in a belt line furnace and contacts formed by SP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, fabrication of a non‐continuous silicon dioxide layer from a silica nanosphere solution followed by the deposition of an aluminium film is shown to be a low‐cost, low‐thermal‐budget method of forming a high‐quality back surface reflector (BSR) on crystalline silicon (c‐Si) thin‐film solar cells. The silica nanosphere layer has randomly spaced openings which can be used for metal‐silicon contact areas. Using glass/SiN/p+nn+ c‐Si thin‐film solar cells on glass as test vehicle, the internal quantum efficiency (IQE) at long wavelengths (>900 nm) is experimentally demonstrated to more than double by the implementation of this BSR, compared to the baseline case of a full‐area Al film as BSR. The improved optical performance of the silica nanosphere/aluminium BSR is due to reduced parasitic absorption in the Al film. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In order to investigate the effects of a back surface field (BSF) on the performance of a p-doped amorphous silicon (p-a-Si:H)/n-doped crystalline silicon (n-c-Si) solar cell, a heterojunction solar cell with a p-a-Si:H/nc-Si/n+-a-Si:H structure was designed. An n+-a-Si:H film was deposited on the back of an n-c-Si wafer as the BSF.The photovoltaic performance of p-a-Si:H/n-c-Si/n+-a-Si:H solar cells were simulated. It was shown that the BSF of the p-a-Si:H/n-c-Si/n+-a-Si:H solar cells could effectively inhibit the decrease of the cell performance caused by interface states.  相似文献   

17.
Guidelines are presented which are designed to achieve planar solar cell efficiencies as high as 17.5% using existing fabrication technologies and silicon substrates with lifetimes as low as 20 μs. Device simulations are performed to elucidate the need and impact of base doping optimization for different back‐surface passivation schemes, cell thicknesses, emitter profiles, and degrees of dopant–defect interaction. Results indicate that optimal resistivity is a function of back‐surface passivation, with the aluminum back‐surface field (BSF) requiring the highest resistivity, the oxide/nitride stack passivation excelling at an intermediate resistivity, and the ohmic contact needing the lowest resistivity. A comparison of simulated 300 and 100 μm cells shows that thinner cells magnify the differences in optimal resistivity for the three back‐surface passivation schemes. A lifetime model is used to account for dopant–defect interaction that can lower bulk lifetime at higher doping levels. It is demonstrated that cell efficiency decreases and optimal resistivity increases at higher levels of dopant–defect interaction. Simulated devices with an optimized base doping showed an efficiency improvement of as much as 2% (absolute) compared with identical devices with a typical base doping level (1.6 or 1.8 Ω cm) and bulk lifetime of 20 μs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The front‐side reflection represents a significant optical loss in solar cells. One way to minimize this optical loss is to nano‐texture the front surface. Although nano‐textured surfaces have shown a broad‐band anti‐reflective effect, their light scattering and surface passivation properties are found to be generally worse than those of standard micro‐textured surfaces. To overcome these setbacks in crystalline silicon solar cells, advanced texturing and passivation approaches are here presented. In the first approach, we propose a modulated surface texture by superimposing nano‐cones on micro‐pyramidal surface texture. This advanced texture applied at the front side of crystalline silicon wafers completely suppresses the reflection in a broad wavelength range from 300 nm up to 1000 nm and efficiently scatters light up to 1200 nm. In the second approach, we show a method to minimize recombination at nano‐textured surfaces by using defect‐removal etching followed by dry thermal oxidation. These two approaches are applied here in an interdigitated back‐contacted crystalline silicon solar cell and result in decoupling of the interplay between the mechanisms behind short‐circuit current density and open‐circuit voltage. The device exhibits a conversion efficiency equal to 19.8%, record external quantum efficiency (78%) at short wavelengths (300 nm), and electrical performance equal to the performance of the reference interdigitated back‐contacted device based on front‐side micro‐pyramids. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Crystalline silicon solar cells based on all‐laser‐transferred contacts (ALTC) have been fabricated with both front and rear metallization achieved through laser induced forward transferring. Both the front and rear contacts were laser‐transferred from a glass slide coated with a metal layer to the silicon substrate already processed with emitter formation, surface passivation, and antireflection coating. Ohmic contacts were achieved after this laser transferring. The ALTC solar cells were fabricated on chemically textured p‐type Cz silicon wafers. An initial conversion efficiency of over 15% was achieved on a simple cell structure with full‐area emitter. Further improvements are expected with optimized laser transferring conditions, front grid pattern design, and surface passivation. The ALTC process demonstrates the advantage of laser processing in simplifying the solar cell fabrication by a one‐step metal transferring and firing process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In order to investigate the effects of a back surface field(BSF) on the performance of a p-doped amorphous silicon(p-a-Si:H)/n-doped crystalline silicon(n-c-Si) solar cell,a heterojunction solar cell with a p-a-Si:H/n-c-Si/n^+-a-Si:H structure was designed.An n^+-a-Si:H film was deposited on the back of an n-c-Si wafer as the BSF.The photovoltaic performance of p-a-Si:H/n-c-Si/n^+-a-Si:H solar cells were simulated.It was shown that the BSF of the p-a-Si:H/n-c-Si/n^+-a-Si:H solar cells could effectively inhibit the decrease of the cell performance caused by interface states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号