首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
With recent advances in wireless networking and in low‐power sensor technology, wireless sensor networks (WSNs) have taken significant roles in various applications. Whereas some WSNs only require minimal bandwidth, newer applications operate with a noticeably larger amount of data. One way to deal with these applications is to maximize the available capacity by utilizing multiple wireless channels. We propose DynaChannAl, a distributed dynamic wireless channel allocation algorithm that effectively distributes nodes to multiple wireless channels in WSNs. Specifically, DynaChannAl targets applications where mobile nodes connect to preexisting wireless backbones and takes the expected end‐to‐end queuing delay as its core metric. We used the link quality indicator values provided by 802.15.4 radios to whitelist high‐quality links and evaluate these links with the aggregated queuing latency, making it useful for applications that require minimal end‐to‐end delay (i.e., health care). DynaChannAl is a lightweight and adoptable scheme that can be incorporated easily with predeveloped systems. As the first study to consider end‐to‐end latency as the core metric for channel allocation in WSNs, we evaluate DynaChannAl on a 45 node test bed and show that DynaChannAl successfully distributes source nodes to different channels and enables them to select channels and links that minimizes the end‐to‐end latency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Wireless sensor networks (WSNs) are characterized by their low bandwidth, limited energy, and largely distributed deployment. To reduce the flooding overhead raised by transmitting query and data information, several data‐centric storage (DCS) mechanisms are proposed. However, the locations of these data‐centric nodes significantly impact the power consumption and efficiency for information queries and storage capabilities, especially in a multi‐sink environment. This paper proposes a novel dissemination approach, which is namely the dynamic data‐centric routing and storage mechanism (DDCRS), to dynamically determine locations of data‐centric nodes according to sink nodes' location and data collecting rate and automatically construct shared paths from data‐centric nodes to multiple sinks. To save the power consumption, the data‐centric node is changed when new sink nodes participate when the WSNs or some queries change their frequencies. The simulation results reveal that the proposed protocol outperforms existing protocols in terms of power conservation and power balancing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In addition to the requirements of the terrestrial sensor network where performance metrics such as throughput and packet delivery delay are often emphasized, energy efficiency becomes an even more significant and challenging issue in underwater acoustic sensor networks, especially when long‐term deployment is required. In this paper, we tackle the problem of energy conservation in underwater acoustic sensor networks for long‐term marine monitoring applications. We propose an asynchronous wake‐up scheme based on combinatorial designs to minimize the working duty cycle of sensor nodes. We prove that network connectivity can be properly maintained using such a design even with a reduced duty cycle. We study the utilization ratio of the sink node and the scalability of the network using multiple sink nodes. Simulation results show that the proposed asynchronous wake‐up scheme can effectively reduce the energy consumption for idle listening and can outperform other cyclic difference set‐based wake‐up schemes. More significantly, high performance is achieved without sacrificing network connectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Energy efficiency has become an important design consideration in geographic routing protocols for wireless sensor networks because the sensor nodes are energy constrained and battery recharging is usually not feasible. However, numerous existing energy‐aware geographic routing protocols are energy‐inefficient when the detouring mode is involved in the routing. Furthermore, most of them rarely or at most implicitly take into account the energy efficiency in the advance. In this paper, we present a novel energy‐aware geographic routing (EAGR) protocol that attempts to minimize the energy consumption for end‐to‐end data delivery. EAGR adaptively uses an existing geographic routing protocol to find an anchor list based on the projection distance of nodes for guiding packet forwarding. Each node holding the message utilizes geographic information, the characteristics of energy consumption, and the metric of advanced energy cost to make forwarding decisions, and dynamically adjusts its transmission power to just reach the selected node. Simulation results demonstrate that our scheme exhibits higher energy efficiency, smaller end‐to‐end delay, and better packet delivery ratio compared to other geographic routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Sensor node energy conservation is the primary design parameters in wireless sensor networks (WSNs). Energy efficiency in sensor networks directly prolongs the network lifetime. In the process of route discovery, each node cooperates to forward the data to the base station using multi‐hop routing. But, the nodes nearer to the base station are loaded more than the other nodes that lead to network portioning, packet loss and delay as a result nodes may completely loss its energy during the routing process. To rectify these issues, path establishment considers optimized substance particle selection, load distribution, and an efficient slot allocation scheme for data transmission between the sensor nodes in this paper. The selection of forwarders and conscious multi‐hop path is selected based on the route cost value that is derived directly by taking energy, node degree and distance as crucial metrics. Load distribution based slot allocation method ensures the balance of data traffic and residual energy of the node in areal‐time environment. The proposed LSAPSP simulation results show that our algorithm not only can balance the real‐time environment load and increase the network lifetime but also meet the needs of packet loss and delay.  相似文献   

7.
The professional design of the routing protocols with mobile sink(s) in wireless sensor networks (WSNs) is important for many purposes such as maximizing energy efficiency, increasing network life, and evenly distributing load balance across the network. Moreover, mobile sinks ought to first collect data from nodes which have very important and dense data so that packet collision and loss can be prevented at an advanced level. For these purposes, the present paper proposes a new mobile path planning protocol by introducing priority‐ordered dependent nonparametric trees (PoDNTs) for WSNs. Unlike traditional clustered or swarm intelligence topology‐based routing methods, a topology which has hierarchical and dependent infinite tree structure provides a robust link connection between nodes, making it easier to reselect ancestor nodes (ANs). The proposed priority‐ordered infinite trees are sampled in the specific time frames by introducing new equations and hierarchically associated with their child nodes starting from the root node. Hence, the nodes with the highest priority and energy that belong to the constructed tree family are selected as ANs with an opportunistic approach. A mobile sink simply visits these ANs to acquire data from all nodes in the network and return to where it started. As a result, the route traveled is assigned as the mobile path for the current round. We have performed comprehensive performance analysis to illustrate the effectiveness of the present study using NS‐2 simulation environment. The present routing protocol has achieved better results than the other algorithms over various performance metrics.  相似文献   

8.
Wireless sensor networks (WSNs) are composed of thousands of smart‐sensing nodes, which capture environment data for a sink node. Such networks present new challenges when compared with traditional computer networks, namely in terms of smart node hardware constraints and very limited energy resources. Ubiquitous computing can benefit from WSNs from the perspective that sensed data can be used instead of the user without explicit intervention, turning ubiquitous computing into a reality. Internet connectivity in WSNs is highly desirable, featuring sensing services at a global scale. Two main approaches are considered: proxy based or sensor node stack based. This second approach turns sensors into data‐producing hosts also known as ‘The Internet of Things’. For years, the TCP/IP (Transmission Control Protocol/Internet Protocol) suite was considered inappropriate for WSNs, mainly due to the inherent complexity and protocol overhead for such limited hardware. However, recent studies made connecting WSNs to the Internet possible, namely using sensor node stack based approaches, enabling integration into the future Internet. This paper surveys the current state‐of‐the‐art on the connection of WSNs to the Internet, presents related achievements, and provides insights on how to develop IP‐based communication solutions for WSNs today. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Wireless sensor networks (WSNs) have received a lot of attention from both academia and industry due to the increasing need for ubiquitous computing for monitoring applications, the continuous advances in miniaturization of electronic devices, and the ultra‐low‐power wireless technologies. These innovations in technology have driven the curiosity to use sensor networks in a new kind of applications such as road track or railway monitoring, border monitoring, oil and gas, or even water pipeline monitoring. Due to the underlying linear topology of these applications, a new type of network, called a linear sensor network (LSN), has emerged. Because of the specific characteristics of this application and the resource constraints of sensors, some of the major challenges faced in LSNs are to reduce end‐to‐end delays, to maximize the packet delivery ratio to a sink, and an even distribution of the load between nodes. To achieve these objectives, it is necessary to control node‐to‐node packet traffic conditions and to manage radio interference created by simultaneously active nodes. This paper addresses these challenges and proposes a new method of clustering LSNs that reduces or controls radio interference risks in order to satisfy these objectives, application needs, and the resource limitations of sensor nodes in the best possible way. This method is applied for LSNs using a token‐passing mechanism to access the medium. The performance evaluation is conducted by using a realistic propagation model in the analytical evaluation and also a NS‐2 simulation process.  相似文献   

10.
The aim of wireless sensor networks (WSNs) is to gather sensor data from a monitored environment. However, the collected or reported information might be falsified by faults or malicious nodes. Hence, identifying malicious nodes in an effective and timely manner is essential for the network to function properly and reliably. Maliciously behaving nodes are usually detected and isolated by reputation and trust‐based schemes before they can damage the network. In this paper, we propose an efficient weighted trust‐based malicious node detection (WT‐MND) scheme that can detect malicious nodes in a clustered WSN. The node behaviors are realistically treated by accounting for false‐positive and false‐negative instances. The simulation results confirm the timely identification and isolation of maliciously behaving nodes by the WT‐MND scheme. The effectiveness of the proposed scheme is afforded by the adaptive trust‐update process, which implicitly performs trust recovery of temporarily malfunctioning nodes and computes a different trust‐update factor for each node depending on its behavior. The proposed scheme is more effective and scalable than the related schemes in the literature, as evidenced by its higher detection ratio (DR) and lower misdetection ratio (MDR), which only slightly vary with the network's size. Moreover, the scheme sustains its efficient characteristics without significant power consumption overheads.  相似文献   

11.
In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.  相似文献   

12.
Recently, solar energy emerged as a feasible supplement to battery power for wireless sensor networks (WSNs) which are expected to operate for long periods. Since solar energy can be harvested periodically and permanently, solar‐powered WSNs can use the energy more efficiently for various network‐wide performances than traditional battery‐based WSNs of which aim is mostly to minimize the energy consumption for extending the network lifetime. However, using solar power in WSNs requires a different energy management from battery‐based WSNs since solar power is a highly varying energy supply. Therefore, firstly we describe a time‐slot‐based energy allocation scheme to use the solar energy optimally, based on expectation model for harvested solar energy. Then, we propose a flow‐control algorithm to maximize the amount of data collected by the network, which cooperates with our energy allocation scheme. Our algorithms run on each node in a distributed manner using only local information of its neighbors, which is a suitable approach for scalable WSNs. We implement indoor and outdoor testbeds of solar‐powered WSN and demonstrate the efficiency of our approaches on them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In wireless sensor network environments, a phenomenon of data concentration may occur in one or certain sensor nodes in the process of transmitting sensing data from a source sensor node to a sink node. In this case, the overhead that occurs in the sensor node affects the performance of the entire sensor network. In addition, in the sensor network, excessive sensing data traffic or data loss may occur depending on the variability of the topology of the sensor network. In this paper, visualization for dynamic rerouting is designed and implemented, which visibly provides packet movement routes between sensor nodes and transmitted packet traffic transmission capacity to Geography Markup Language‐based maps having GPS coordinate information. A mechanism for the visualization for dynamic rerouting to detect sensing data overheads and sensor node faults occurring in sensor networks and dynamically rerouting of data is proposed. In addition, information on rerouting route paths from source sensors to sink nodes is visually provided. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In hierarchical sensor networks using relay nodes, sensor nodes are arranged in clusters and higher powered relay nodes can be used as cluster heads. The lifetime of such a network is determined primarily by the lifetime of the relay nodes. In this paper, we propose two new integer linear programs (ILPs) formulations for optimal data gathering, which maximize the lifetime of the upper tier relay node network. Unlike most previous approaches considered in the literature, our formulations can generate optimal solutions under the non‐flow‐splitting model. Experimental results demonstrate that our approach can significantly extend network lifetime, compared to traditional routing schemes, for the non‐flow‐splitting model. The lifetime can be further enhanced by periodic updates of the routing strategy based on the residual energy at each relay node. The proposed rescheduling scheme can be used to handle single or multiple relay node failures. We have also presented a very simple and straightforward algorithm for the placement of relay nodes. The placement algorithm guarantees that all the sensor nodes can communicate with at least one relay node and that the relay node network is at least 2‐connected. This means that failure of a single relay node will not disconnect the network, and data may be routed around the failed node. The worst case performance of the placement algorithm is bounded by a constant with respect to any optimum placement algorithm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Unlike terrestrial sensor networks, underwater sensor networks (UWSNs) have salient features such as a long propagation delay, narrow bandwidth, and high packet loss over links. Hence, path setup‐based routing protocols proposed for terrestrial sensor networks are not applicable because a large latency of the path establishment is observed, and packet delivery is not reliable in UWSNs. Even though routing protocols such as VBF (vector based forwarding) and HHVBF (hop‐by‐hop VBF) were introduced for UWSNs, their performance in terms of reliability deteriorates at high packet loss. In this paper, we therefore propose a directional flooding‐based routing protocol, called DFR, in order to achieve reliable packet delivery. DFR performs a so‐called controlled flooding, where DFR changes the number of nodes which participate in forwarding a packet according to their link quality. When a forwarding node has poor link quality to its neighbor nodes geographically advancing toward the sink, DFR allows more nodes to participate in forwarding the packet. Otherwise, a few nodes are enough to forward the packet reliably. In addition, we identify two types of void problems which can occur during the controlled flooding and introduce their corresponding solutions. Our simulation study using ns‐2 simulator proves that DFR is more suitable for UWSNs, especially when links are prone to packet loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Localization is essential for wireless sensor networks (WSNs). It is to determine the positions of sensor nodes based on incomplete mutual distance measurements. In this paper, to measure the accuracy of localization algorithms, a ranging error model for time of arrival (TOA) estimation is given, and the Cramer—Rao Bound (CRB) for the model is derived. Then an algorithm is proposed to deal with the case where (1) ranging error accumulation exists, and (2) some anchor nodes broadcast inaccurate/wrong location information. Specifically, we first present a ranging error‐tolerable topology reconstruction method without knowledge of anchor node locations. Then we propose a method to detect anchor nodes whose location information is inaccurate/wrong. Simulations demonstrate the effectiveness of our algorithm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In wireless sensor networks (WSNs), sensors gather information about the physical world and the base station makes decision and then performs appropriate actions upon the environment. This technology enables a user to effectively sense and monitor from a distance in real‐time. WSNs demand real‐time forwarding which means messages in the network are delivered according to their end‐to‐end deadlines (packet lifetime). This paper proposes a novel real‐time routing protocol with load distribution (RTLD) that ensures high packet throughput with minimized packet overhead and prolongs the lifetime of WSN. The routing depends on optimal forwarding (OF) decision that takes into account of the link quality (LQ), packet delay time and the remaining power of next hop sensor nodes. The proposed mechanism has been successfully studied through simulation work. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Debugging in distributed environments, such as wireless sensor networks (WSNs), which consist of sensor nodes with limited resources, is an iterative and occasionally laborious process for programmers. In sensor networks, it is not easy to find unintended bugs that arise during development and deployment, and that are due to a lack of visibility into the nodes and a dearth of effective debugging tools. Most sensor network debugging tools are not provided with effective facilities such as real‐time tracing, remote debugging, or a GUI environment. In this paper, we present a hybrid debugging framework (HDF) that works on WSNs. This framework supports query‐based monitoring and real‐time tracing on sensor nodes. The monitoring supports commands to manage/control the deployed nodes, and provides new debug commands. To do so, we devised a debugging device called a Docking Debug‐Box (D2‐Box), and two program agents. In addition, we provide a scalable node monitor to enable all deployed nodes for viewing. To transmit and collect their data or information reliably, all nodes are connected using a scalable node monitor applied through the Internet. Therefore, the suggested framework in theory does not increase the network traffic for debugging on WSNs, and the traffic complexity is nearly O(1).  相似文献   

20.
In wireless sensor networks (WSNs), there are many critical applications (for example, healthcare, vehicle tracking, and battlefield), where the online streaming data generated from different sensor nodes need to be analyzed with respect to quick control decisions. However, as the data generated by these sensor nodes usually flow through open channel, so there are higher chances of various types of attacks either on the nodes or on to the data captured by these nodes. In this paper, we aim to design a new elliptic curve cryptography–based user authenticated key agreement protocol in a hierarchical WSN so that a legal user can only access the streaming data from generated from different sensor nodes. The proposed scheme is based upon 3‐factor authentication, as it applies smart card, password, and personal biometrics of a user (for ticket generation). The proposed scheme maintains low computation cost for resource‐constrained sensor nodes, as it uses efficient 1‐way cryptographic hash function and bitwise exclusive‐OR operations for secure key establishment between different sensor nodes. The security analysis using the broadly accepted Burrows‐Abadi‐Needham logic, formal security verification using the popular simulation tool (automated validation of Internet security protocols and applications), and informal security show that the proposed scheme is resilient against several well‐known attacks needed for a user authentication scheme in WSNs. The comparison of security and functionality requirements, communication and computation costs of the proposed scheme, and other related existing user authentication schemes shows the superior performance of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号