首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method of preparing linear polyamide‐polyhedral oligomeric silsesquioxane (PA‐POSS) hybrid nanocomposites in a reactor using thionyl chloride/triethylamine (TEA) as the activating agent was investigated. Soluble polyamic acid (PAA) having carboxylic acid end groups were first synthesized by condensation reaction of 2,2‐ bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]‐1,1,1,3,3,3‐hexafluoropropane, (6FODA). The PAA was acylated by SOCl2/TEA and followed by the addition of different mole percentages of aminopropyl heptacyclopentyl POSS (AP‐POSS) and 3‐(trifluoromethyl) aniline to get the PA‐POSS hybrid nanocomposites. The chemical structure of PA‐POSS hybrid nanocomposites were investigated by ATR‐FTIR and NMR spectroscopic techniques. Thermal and morphological properties of PA‐POSS were influenced by changing the percentage of POSS and investigated by thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Wide angle X‐ray diffraction and contact angle measurements. The PA‐POSS with hexafluoroisopropylidene and POSS groups have higher bulk density resulting in higher free volume and then increasing the solubility property. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
Poly(ethylene terephthalate) (PET) containing epoxy‐functionalized polyhedral oligomeric silsesquioxane (POSS) was prepared by melt‐mixing and in situ polymerization methods. The melt‐mixed composite showed phase separation while the in situ polymerized composite did not, based on SEM characterization. During melt mixing, the reaction between the epoxy groups of POSS and hydroxyl groups of PET occurred, based on DSC results. DSC results on the in situ polymerization product showed formation of a lower‐melting component compared with PET. The tensile strength and modulus of the melt‐mixed composite fiber decreased compared with those properties of PET, whereas those of the in situ polymerized composite showed slightly higher values than PET despite the relatively small amounts (1 wt%) of POSS used. Dynamic mechanical analysis results showed an increase in storage modulus for the in situ polymerized composite of POSS and PET compared with PET over the temperature range of 40 °C to 140 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
The synthesis is reported of novel hybrid hydrogels based on ethylenediaminetetraacetic acid dianhydride and poly(ethylene glycol) (PEG) with octa‐aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA‐POSS) as a nano‐crosslinker under solvent‐free conditions. The molecular weight of PEG was varied between 600 and 1000 Da. The synthesized hydrogels were characterized using various techniques. Further, the swelling behavior and antibacterial activity of the hydrogels and release kinetics of metronidazole (MTZ) as a model drug from them were evaluated. Experimental results demonstrate that hydrogels with tunable properties can be synthesized by varying the PEG molecular weight and type of crosslinker (hybrid or organic). Among the synthesized hybrid hydrogels, that crosslinked by OA‐POSS with long PEG chains (1000 Da) showed the highest swelling degree (2000%), drug encapsulation efficiency (88%) and extent of MTZ release (96%). © 2018 Society of Chemical Industry  相似文献   

4.
Poly(vinyl pyrrolidone‐co‐isobutyl styryl polyhedral oligomeric silsesquioxane)s (PVP–POSS) were synthesized by one‐step polymerization and characterized using FTIR, high‐resolution 1H‐NMR, solid‐state 13C‐NMR, 29Si‐NMR, GPC, and DSC. The POSS content can be controlled by varying the POSS feed ratio. The Tg of the PVP–POSS hybrid is influenced by three main factors: (1) a diluent role of the POSS in reducing the self‐association of the PVP; (2) a strong interaction between the POSS siloxane and the PVP carbonyl, and (3) physical aggregation of nanosized POSS. At a relatively low POSS content, the role as diluent dominates, resulting in a decrease in Tg. At a relatively high POSS content, the last two factors dominate and result in Tg increase of the PVP–POSS hybrid. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2208–2215, 2004  相似文献   

5.
A series of poly(methyl methacrylate) (PMMA) containing octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) nanocomposites were synthesized by solution polymerization. The products were characterized by FTIR, 1H NMR, GPC, TEM, DSC and TGA. The actual contents of OV-POSS in the obtained products and the reaction degree of the vinyl groups in the POSS were calculated on the basis of FTIR, TGA and 1H NMR data respectively. The DSC and TGA results indicate that the incorporation of POSS molecules could improve the thermal properties of PMMA nanocomposites significantly. The glass transition temperature (Tg) and thermal decomposition temperature (Tdec1) of the nanocomposite with 12.27 wt % of OV-POSS were increased by 23 °C and 93 °C correspondingly. In our experiment, the improved thermal properties were largely attributed to the nanoreinforcement effect of POSS cages and the formation of star-shaped structures with cubic silsesquioxane core.  相似文献   

6.
Three kinds of novel organic montmorillonites (OMMTs) were prepared by reacting the amino polyhedral oligomeric silsesquioxanes (POSSs) with the OMMTs that had already been modified by cationic surfactants. The layer spacing of OMMT increased from 1.68 to 3.81 nm after being intercalated by POSS. Poly(l ‐lactide) (PLLA) based nanocomposites with montmorillonites were produced by melt compounding. The PLLA nanocomposites with POSS modified OMMT were comprised of a random dispersion of intercalated/exfoliated aggregates of layered silicates throughout the PLLA matrix. The incorporation of POSS modified OMMT resulted in a significant increase in both crystallization temperature and decomposition temperature for 5% weight loss in comparison with the virgin PLLA. Gas Permeation Analysis showed that the increase of the montmorillonite concentration in the polymer matrix led to an expected decrease in permeation values. Gas barrier properties of the nanocomposites were compared with those predicted by phenomenological models such as the Nielsen model and Cussler model. POLYM. ENG. SCI., 54:2489–2496, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
Yuan-Jyh Lee  Chih-Feng Huang 《Polymer》2006,47(12):4378-4386
A new class of polybenzoxazine/POSS nanocomposites with network structure is prepared by reacting multifunctional benzoxazine POSS (MBZ-POSS) with benzoxazine monomers (Pa and Ba) at various compositional ratios. Octafunctional cubic silsesquioxane (MBZ-POSS) is used as a curing agent, which is synthesized from eight organic benzoxazine tethers through hydrosilylation of vinyl-terminated benzoxazine monomer (VP-a) with octakis(dimethylsiloxy)silsesquioxane () using a platinum complex catalyst (Pt-dvs). Incorporation of the silsesquioxane core into polybenzoxazine matrix could significantly hinder the mobility of polymer chains and enhance the thermal stability of these hybrid materials. For these nanocomposites, increasing the POSS content in the hybrids is expected to improve its thermal properties with respect to the neat polybenzoxazine. The morphology feature is useful to explain the thermal property changes (Tg and Td) and AFM images show that the presence of POSS aggregation in larger scales occurs at higher POSS contents. The reason of the heterogeneous phase separation may be from the less compatibility of the inorganic silsesquioxane core with organic benzoxazine species and the homopolymerization of MBZ-POSS. In the course of the formation of the polybenzoxazine/POSS hybrids, POSS particles were separated from the polybenzoxazine rich region, leading to POSS rich domains in the range of 50-1000 nm.  相似文献   

8.
POSS/PMMA composite was synthesized by atom transfer radical polymerization (ATRP) at 110 °C using commercial POSSCl as an initiator and CuCl/2,2′-bipyridine as catalyst system. The structures of POSS/PMMA and POSSCl were characterized by Fourier transfer infrared spectroscopy, Nuclear magnetic resonance spectroscopy, Ger permeation chromatography, X-ray diffraction and X-ray photoelectron spectroscopy, which confirmed that Si–Cl bond on POSS cage could successfully initiate the ATRP of methyl methacrylate, so there is only one POSS unit in a PMMA chain. The thermal properties of POSS/PMMA were investigated by Differential scanning calorimetry and Thermogravimetric analysis, the results show that the incorporation of POSS cage results in the enhancement of the glass transition temperature and the decomposition temperature of PMMA, which is mainly attributed to the mono-dispersion of POSS in PMMA matrix at molecular lever.  相似文献   

9.
BACKGROUND: Organic–inorganic nanocomposites were prepared by copolymerization of various monomers and polyhedral oligomeric silsesquioxane (POSS) derivatives. Preliminary results showed that styrene/styryl–POSS copolymers could be obtained using CpTiCl3 catalyst. In the work reported here, the copolymerization of styrene and styryl‐substituted POSS was studied in detail for a more effective catalyst, Cp*TiCl3. RESULTS: The glass transition temperature (Tg) of the copolymers prepared increased with increasing POSS content. The degradation temperature (Td) of the copolymers was 60 °C higher than that of syndiotactic polystyrene under nitrogen. Although the thermal properties were improved by incorporation of POSS, the catalytic activity decreased with POSS content. The racemic triad and syndiotactic index of the copolymers decreased with increasing POSS content. Gel permeation chromatograms of the copolymers exhibited multimodal distribution due to the presence of multi‐active centres, which were formed by interaction of Ti with the POSS siloxane linkage. CONCLUSION: With the incorporation of POSS, the thermal properties of polystyrene were improved. The styrene/styryl–POSS copolymers are formed through the various active sites arising from the interactions of Ti with POSS. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
Variously substituted polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites of general formula R7R′(SiO1.5)8/PS (where R = isobutyl and R′ = 4‐methoxyphenyl, 4‐methylphenyl, 3,5‐dimethylphenyl, 4‐fluorophenyl, 2,4‐difluorophenyl, 4‐chlorophenyl) were prepared by in situ polymerization of styrene in the presence of 5% w/w of POSS. The actual filler concentration in the obtained nanocomposites was checked by 1H NMR spectroscopy. Scanning electron microscopy and FTIR spectroscopy evidenced the presence of filler‐polymer interactions. Inherent viscosity (ηinh) determinations indicated that the average molar mass of polymer in halogenated derivatives was lower than neat PS, and were in agreement with calorimetric glass transition temperature (Tg) measurements. Finally, a comparative study concerning the thermal stability of synthesized nanocomposites was carried out in both inert (flowing nitrogen) and oxidative (static air) atmospheres into a thermobalance, in the scanning mode, at 10°C min−1, and the temperatures at 5% mass loss (T5%), of various compounds were determined. The results were discussed and interpreted. POLYM. COMPOS., 35:151–157, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
含活性氢基的八聚笼型倍半硅氧烷的合成与表征   总被引:1,自引:0,他引:1  
笼形倍半硅氧烷具有较低的介电常数。采用正硅酸乙酯和季铵碱为原材料,合成了八聚四甲基铵基笼型倍半硅氧烷,并采用二甲基氯硅烷对其进行烷基取代,得到了含活性氢基的八聚笼型倍半硅氧烷。采用核磁共振29Si、13C、1H谱和凝胶渗透色谱GPC对其结构进行了表征和确认。  相似文献   

12.
八乙烯基多面体低聚倍半硅氧烷的合成与表征   总被引:2,自引:0,他引:2  
采用水解缩合法,在浓HCl为催化剂的条件下,以乙烯基三甲氧基硅烷为原料合成了八乙烯基多面体低聚倍半硅氧烷,并对合成产物进行了表征;研究了反应温度、反应物的投料比对产物收率的影响.结果表明,在25 ℃,反应物水解缩合21 d,乙烯基三甲氧硅烷、HCl、CH3OH三者的体积比为9∶ 12∶ 200,乙烯基三甲氧基硅烷、HCl的体积分数分别为3.90%、5.43%时,产物的收率达到最高,为26.3%.  相似文献   

13.
The structure and properties of organic-inorganic hybrid nanocomposites prepared from a resole phenolic resin and a POSS mixture containing >95 wt% trisilanolphenyl POSS was investigated by POM (polarized optical microscopy), SEM, TEM, WAXD, FT-IR, DSC, and TGA techniques. Composites with 1.0-10.4 wt% of POSS were prepared by dissolving the POSS and the phenolic resin into THF, followed by solvent removal and curing. Both nano- and micro-sized POSS filler aggregates and particles were shown to be heterogeneously dispersed in the cured matrix by POM, TEM, SEM, and X-EDS. POSS was found everywhere, including in both dispersed phase domains and in the matrix. The nanocomposite morphology appears to form by a multi-step POSS aggregation during the process of phase separation. Both the matrix and dispersed ‘particulate’ phase domains are mixtures of phenolic resin and POSS. POSS micro-crystals act as the core of the dispersed phase. The bigger dispersed domains consist of smaller particles or aggregates of POSS molecules that exhibit some order but regions of matrix resin are interspersed. A WAXD peak at 2θ∼7.3° indicates crystalline order in the POSS aggregates. This characteristic peak's intensity increases with an increase in POSS loading, suggesting that more POSS molecules have aggregated or crystallized. FT-IR spectra confirm that hydrogen bonding exists between the phenolic resin and POSS Si-OH groups. This increases their mutual compatibility, but H-bonding does not prevent POSS aggregation and phase separation during curing. TGA measurements in air confirmed the temperature for 5% mass loss in increases with increase of POSS loading and at T>550° the thermal stability increases more sharply with POSS loading. The nanocomposite glass transition temperatures (Tg) are only slightly be affected by the POSS filler.  相似文献   

14.
A series of functional polyhedral oligomeric silsesquioxane (POSS)/polyimide (PI) nanocomposites were prepared using a two‐step approach. First, octa(aminophenyl)silsesquioxane (OAPS) was mixed with poly(amic acid) (PAA) prepared by reacting bis(4‐amino‐3,5‐dimethylphenyl)‐3‐quinolylmethane and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride. Second, the resulting solution was subjected to thermal imidization. The well‐defined ‘hard particles’ (POSS) and the strong covalent bonds in the amide linkage between the carbon atom of the carboxyl side group in PAA and the nitrogen atom of the amino group in POSS lead to a significant improvement in the thermal and mechanical properties. Homogeneous dispersion of POSS cages in the PI is evident from scanning electron microscopy, which further confirms that the POSS molecule becomes an integral part of the organic‐inorganic inter‐crosslinked network system. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperatures of the POSS‐containing nanocomposites are higher than that of the corresponding neat PI system, owing to the significant increase of the crosslinking density in the PI/POSS nanocomposites. Increasing the concentration of OAPS in the PI networks decreases the dielectric constant. Pure PI and PI/POSS systems have good antimicrobial activity. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
In this study, a series of novel hybrid pH-sensitive block copolymers containing POSS (HBCPs), poly(methacrylisobutyl-POSS)-b-poly(4-vinylpyridine) (PMAiBuPOSS-b-P4VP) and poly(methacrylisobutyl-POSS)-b-polystyrene-b-poly(4-vinylpyridine) (PMAiBuPOSS-b-PS-b-P4VP), were synthesized via reversible addition fragmentation chain-transfer (RAFT) polymerization. Their structures and molecular weight were characterized via 1H NMR, GPC and TEM. Their self-assembly behaviors, including pH-sensitive behaviors and self-assembly morphologies in aqueous solution, were investigated via DLS and TEM. It was found that the size of aggregates in aqueous solution would initially decrease and later increase as the pH value increased. It is supposed that this behavior was caused by the pH sensitivity of the P4VP block of the HBCPs. Our hybrid triblock copolymers were found to assemble nanowires and nanospheres. Unique dot-like phase separation was also observed in the aggregates of the HBCPs at pH 1. Furthermore, we investigated the effects of block length and structure on the self-assembly morphologies of the HBCPs.  相似文献   

16.
This article reports the preparation of poly(trimethylene terephthalate) (PTT)– polyhedral oligomeric silsesquioxanes (POSS) nanocomposites through in situ polymerization. The chemical structure of the PTT–POSS nanocomposites was characterized with Fourier‐transform infrared and nuclear magnetic resonance spectroscopies and the presence of POSS was further confirmed by the elemental analysis. The crystal structures as well as the position of POSS in the nanocomposites were ascertained by the X‐ray diffraction (XRD) studies. Thermal characterization studies showed the gradual decrease in the glass transition and melt crystallization temperatures. Though the thermal stability of the PTT was not affected by the incorporation of POSS, the amount of residues obtained from thermal degradation process was increased with an increase in the content of POSS. The tensile studies showed that the values of initial modulus and breaking strength were dramatically decreased with an increase in the content of POSS. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Fc-CHCH-C6H6-(C5H9)7Si8O12 (POSS1, Fc: ferrocene) which contain both metal and CC double bond was firstly synthesized by Wittig reaction. The chemical structure of POSS1 was characterized by FTIR, 1H, 13C and 29Si NMR, mass spectrometry and elemental analysis, and the magnetic property of POSS1 have also been studied. Polystyrene composites containing inorganic-organic hybrid polyhedral oligomeric silsesquioxane (POSS1) were prepared by bulk free radical polymerization. XRD and TEM studies indicate that POSS1 is completely dispersed at molecular level in PS matrix when 1 wt% POSS1 is introduced, while some POSS1-rich nanoparticals are present when content of POSS1 is beyond 3 wt%. GPC results show that molecular weight of the PS/POSS1 nanocomposites are increased with addition of POSS1. TGA and TMA data show the thermal stabilities of PS/POSS1 nanocomposites have been improved compared to neat PS. The PS/POSS1 nanocomposites also display higher glass transition temperatures (Tg) in comparison with neat PS. Viscoelastic properties of PS/POSS1 nanocomposites were investigated by DMTA. The results show the storage modulus (E′) values (temperature>Tg) and the loss factor peak values of the PS/POSS1 nanocomposites are higher than that of neat PS. Mechanical properties of the PS/POSS1 nanocomposites are improved compared to the neat PS.  相似文献   

19.
Yonghong Liu  Kangming Nie 《Polymer》2005,46(25):12016-12025
The POSS-containing nanocomposites of epoxy resin were prepared via the co-curing reaction between octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) and the precursors of epoxy resin. The curing reactions were started from the initially homogeneous ternary solution of diglycidyl ether of bisphenol A (DGEBA), 4,4′-Diaminodiphenylmethane (DDM) and OpePOSS. The nanocomposites containing up to 40 wt% of POSS were obtained. The homogeneous dispersion of POSS cages in the epoxy matrices was evidenced by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and atomic force microscopy (AFM). Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) showed that at the lower POSS concentrations (<30 wt%) the glass transition temperatures (Tgs) of the nanocomposites almost remained invariant whereas the nanocomposites containing POSS more than 40 wt% displayed the lower Tgs than the control epoxy. The DMA results show that the moduli of the nanocomposites in glass and rubbery states are significantly higher than those of the control epoxy, indicating the nanoreinforcement effect of POSS cages. Thermogravimetric analysis (TGA) indicates that the thermal stability of the polymer matrix was not sacrificed by introducing a small amount of POSS, whereas the properties of oxidation resistance of the materials were significantly enhanced. The improved thermal stability could be ascribed to the nanoscaled dispersion of POSS cages and the formation of tether structure of POSS cages with epoxy matrix.  相似文献   

20.
Poly(ε‐caprolactone)/clay nanocomposites were synthesized by in situ ring‐opening polymerization of ε‐caprolactone in the presence of montmorillonite modified by hydroxyl functionalized, quaternized polyhedral oligomeric silsesquioxane (POSS) surfactants. The octa(3‐chloropropyl) polyhedral oligomeric silsesquioxane was prepared by hydrolytic condensation of 3‐chloropropyltrimethoxysilane, which was subsequently quaternized with 2‐dimethylaminoethanol. Montmorillonite was modified with the quaternized surfactants by cation exchange reaction. Bulk polymerization of ε‐caprolactone was conducted at 110°C using stannous octoate as an initiator/catalyst. Nanocomposites were analyzed by X‐ray diffraction, transmission electron microscopy, thermo gravimetric analysis, and differential scanning calorimetry. Hydroxyl functionalized POSS was employed as a surface modifier for clay which gives stable clay separation for its 3‐D structure and also facilitates the miscibility of polymer with clay in the nanocomposites due to the star architecture. An improvement in the thermal stability of PCL was observed even at 1 wt % of clay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号