首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied thermoplastic poly(phthalazinone ether ketone) (PPEK) resin as a sizing agent on carbon fiber, with emphasis on its thermal stability, surface energy, wetting performance, and interfacial shear strength (IFSS). X‐ray photoelectron spectroscopy characterization was carried out to study the chemical structure of sized/unsized carbon fibers. Scanning electron microscopy and atomic force microscopy were used to characterize surface topography. TGA was used to analyze the thermal stability. Meanwhile, contact angle measurement was applied to analyze the compatibility between the carbon fibers and PPEK and the surface energy of carbon fibers. IFSS of carbon fiber/PPEK composite was examined by microbond testing. It is found that carbon fibers uniformly coated with PPEK resin had better thermal stability and compatibility with PPEK resin than the uncoated fiber. The contact angle is 57.01° for sized fibers, corresponding to a surface energy of 49.96 mJ m?2, much smaller than that for unsized ones with contact angle value of 97.05°. The value of IFSS for sized fibers is 51.49 MPa, which is higher than the unsized fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
This article aims to study the effect of the sizing materials type on the mechanical, thermal, and morphological properties of carbon fiber (CF)‐reinforced polyamide 6,6 (PA 6,6) composites. For this purpose, unsized CF and sized CFs were used. Thermogravimetric analysis was performed, and it has been found that certain amounts of polyurethane (PU) and PA sizing agents decompose during processing. The effects of sizing agent type on the mechanical and thermomechanical properties of all the composites were investigated using tensile, Izod impact strength test, and dynamic mechanical analysis. Tensile strength values of sized CF‐reinforced composites were higher than that of unsized CF‐reinforced composites. PA and polyurethane sized CF‐reinforced composites exhibited the highest impact strength values among the other sized CF‐reinforced composites. PU and PA sized CF‐reinforced composites denoted higher storage modulus and better interfacial adhesion values among the other sizing materials. Scanning electron microscope studies indicated that CFs which were sized with PU and PA have better interfacial bonding with PA 6,6 matrix among the sized CFs. All the results confirmed that PA and PU were suitable for CF's sizing materials to be used for PA 6,6 matrix. POLYM. COMPOS., 34:1583–1590, 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
A floating catalyst chemical vapor deposition (CVD) unit was utilized to grow CNT onto the surface of carbon fiber (CF). The surface morphology of the resultant fibers, CNT population density and alignment pattern were found to be depended on the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. In contrast to the neat‐CF reinforced composites, improved interfacial shear strength (IFSS) between CF and matrix were obtained when the surface of CF was coated by CNT. Particularly, CF treatment condition for CNT‐coating with 700°C reaction temperature and 30 min reaction time has shown a considerable increase in IFSS approximately of 45% over that of the untreated fiber from which it was processed. The proper justification of fiber–matrix adhesion featured by composite interfacial properties was explained through IFSS. POLYM. COMPOS., 36:1941–1950, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
This article aims to improve interfacial properties of carbon fiber‐reinforced poly(phthalazinone ether ketone) (PPEK) composites by means of preparing carbon nanotube (CNT)/carbon fiber hybrid fiber. XPS was used to characterize the chemical structure of unsized carbon fiber and SEM was used to observe the surface topography of carbon fibers. Specific area measurement, dynamic contact angle, and interfacial shear strength (IFSS) testing were performed to examine the effect of CNT on the interfacial properties of carbon fiber/PPEK composites. By the introduction of CNT to the interphase of carbon fiber‐reinforced PPEK composites, an enhancement of IFSS by 55.52% was achieved. Meanwhile, the interfacial fracture topography was also observed and the reinforcing mechanism was discussed. POLYM. COMPOS., 36:26–33, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
《Polymer Composites》2017,38(1):27-31
A novel method was developed for grafting poly(acrylamide) (PAAM) on to the carbon fiber (CF) surface via reversible addition–fragmentation chain transfer (RAFT) polymerization to improve the interaction between carbon fibers and epoxy matrix in the composites system. The carbon fibers were first treated with nitric acid and γ‐methacryloxypropyltrimethoxy silane (KH570). Then, the PAAM was grafting onto the carbon fiber surface via RAFT polymerization. The resulted carbon fibers functionalized with PAAM (CF‐PAAM) were characterized by FTIR, XPS, and TGA, and the results revealed that CF‐PAAM were synthesized successfully. The introduction of PAAM chains could make the fiber surface rougher and introduce a large numbers of –NH2 groups, which can improve the interfacial adhesion in the composites. The microbond test results showed that the interfacial shear strength (IFSS) of the composites reinforced by CF‐PAAM has been enhanced about 107%. POLYM. COMPOS., 38:27–31, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

7.
利用微脱黏法测定碳纤维/环氧树脂复合材料的界面剪切强度,并分析了造成测试结果分散的影响因素.结果表明:在脱黏过程中,最大脱黏力随碳纤维埋人环氧树脂内长度的增加而线性递增,当埋人长度超过一定值后最大脱黏力趋于稳定:碳纤维与环氧树脂间的接触角对复合材料界面剪切强度有一定影响,接触角越大,界面剪切强度越高;测试结果的分散性与树脂微球的半月板区域、钳口区等因素有关;未经表面处理的碳纤维增强环氧树脂复合材料的界面剪切强度仪为39.4 MPa,低于处理后的复合材料(60.6 MPa).  相似文献   

8.
A phenylethynyl-terminated imide oligomer (LaRC PETI-5®) with a number average molecular weight of 2500 g/mol has been applied onto the surfaces of PAN-based carbon fiber tows and woven carbon fabrics as a sizing material to introduce an interphase between the fiber and matrix in carbon/BMI composites. The adhesion between the fiber and matrix was enhanced by the presence of a properly processed LaRC PETI-5® interphase. The results showed that when LaRC PETI-5® was sized and processed at 150°C, the interfacial shear strength (IFSS) of unidirectional IM7/BMI composite measured by using a microindentation technique and the interlaminar shear strength (ILSS) of a carbon/BMI composite measured by short beam shear test were markedly improved by about 35% and 66%, respectively, in comparison with the unsized counterparts. The adhesion enhancement strongly depends not only on the presence or absence of LaRC PETI-5® sizing interphase but also on the temperature profile applied to the sizing before composite fabrication. Both of these factors critically influence the physical and chemical state of the sizing material. Scanning electron microscopic observations of the composite fracture surfaces support the improved interfacial property of carbon/BMI composites.  相似文献   

9.
Composites based on carbon fiber (CF) and benzoxazine (BA‐a) modified with PMDA were investigated. The flammability of the carbon fiber composites was examined by limiting oxygen index (LOI) and UL‐94 vertical tests. The LOI values increased from 26.0 for the CF/poly(BA‐a) composite to 49.5 for the CF‐reinforced BA‐a/PMDA composites as thin as 1.0 mm and the CF‐reinforced BA‐a/PMDA composites were also achieved the maximum V‐0 fire resistant classification. Moreover, the incorporation of the PMDA into poly(BA‐a) matrix significantly enhanced the Tg and the storage modulus (E') values of the CF‐reinforced BA‐a/PMDA composites rather than those of the CF/poly(BA‐a). The Tg values and storage moduli of the obtained CF‐reinforced BA‐a/PMDA composites were found to have relatively high value up to 237°C and 46 GPa, respectively. The CF‐reinforced BA‐a/PMDA composites exhibited relatively high degradation temperature up to 498°C and substantial enhancement in char yield with a value of up to 82%, which are somewhat higher compared to those of the CF/poly(BA‐a) composite, i.e., 405°C and 75.7%, respectively. Therefore, due to the improvement in flame retardant, mechanical and thermal properties, the obtained CF‐reinforced BA‐a/PMDA composites exhibited high potential applications in advanced composite materials that required mechanical integrity and self‐extinguishing property. POLYM. COMPOS., 34:2067–2075, 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
We successfully prepared a graphene-modified carbon fiber (CF) sizing agent with good dispersity and stability by dispersing reduced graphene oxide (RGO) into an emulsion-type sizing agent. RGO was obtained by the reduction of graphene oxide (GO) with the help of gallic acid. The influence of the graphene-modified sizing agent on the interfacial properties of the CF–epoxy resin composites was investigated with microbond testing and the three-point bending method. The results show that optimized interfacial properties were achieved when the size of the modified graphene was less than 1 μm, the content of RGO was 20 ppm, and the pH value of the sizing agent was 10.5. The interfacial shear strength of the composites reached 92.3 MPa, which was 29.6% higher than that of the composites with unmodified CFs. Compared with commercial-CF-fabric-reinforced composites, the interlaminar shear strength of the composites treated with the RGO-modified sizing agent increased by 21.5%. Both the interfacial and interlaminar failure morphologies of the composites were examined with scanning electron microscopy (SEM). The results show that a large amount of residual resin adhered to the surfaces of the CFs treated with the RGO-modified sizing agent; this indicated good interfacial properties between the CFs and the resin matrix. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47122.  相似文献   

11.
The performance of carbon fibers-reinforced composites is dependent to a great extent on the properties of fiber–matrix interface. To improve the interfacial properties in carbon fibers/epoxy composites, nano-SiO2 particles were introduced to the surface of carbon fibers by sizing treatment. Atomic force microscope (AFM) results showed that nano-SiO2 particles had been introduced on the surface of carbon fibers and increase the surface roughness of carbon fibers. X-ray photoelectron spectroscopy (XPS) showed that nano-SiO2 particles increased the content of oxygen-containing groups on carbon fibers surface. Single fiber pull-out test (IFSS) and short-beam bending test (ILSS) results showed that the IFSS and ILSS of carbon fibers/epoxy composites could obtain 30.8 and 10.6% improvement compared with the composites without nano-SiO2, respectively, when the nano-SiO2 content was 1 wt % in sizing agents. Impact test of carbon fibers/epoxy composites treated by nano-SiO2 containing sizing showed higher absorption energy than that of carbon fibers/epoxy composites treated by sizing agent without nano-SiO2. Scanning electron microscopy (SEM) of impact fracture surface showed that the interfacial adhesion between fibers and matrix was improved after nano-SiO2-modified sizing treatment. Dynamic mechanical thermal analysis (DMTA) showed that the introduction of nano-SiO2 to carbon fibers surface effectively improved the storage modulus of carbon fibers/epoxy.  相似文献   

12.
The changes in interfacial fracture energy of three kinds of commercially sized carbon fiber (CF)/epoxy resin composites in the range from ambient temperature to 130°C were investigated using the single‐fiber fragmentation test to evaluate the heat resistance of the interphase. The effects of CF sizing on the interfacial bonding property were studied using desized CF/epoxy resin composites. Thermogravimetric analysis and differential scanning calorimetry of the combination of sizing and matrix were employed to investigate the role of sizing on the variations in the fiber/matrix interfacial property under elevated temperature. The interfacial fracture energy values of all the studied CF composites were found to decrease quickly during the initial stage of temperature rise and drop gradually at higher temperature. At elevated temperature, the desized CF composites had higher heat resistance than the corresponding sized fiber composites. The differences in the interfacial heat resistance among the three kinds of CF composites and the difference in the interfacial thermal stability between the sized and the desized fiber composites were related to different glass transition temperatures of the interphases. The interaction between sizing and the matrix and the chain motion of the crosslink structure of the interphase has been suggested to determine the interfacial heat resistance. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
A liquid sizing agent containing multiwall carbon nanotubes (MWCNTs) was prepared for carbon fiber (CF) reinforced methylphenylsilicone resin (MPSR) composite applications. In order to improve the dispersion of MWCNTs in the sizing agent and interfacial adhesion between CF and MPSR, MWCNTs and CF were functioned by the chemical modification with tetraethylenepentamine (TEPA) used as a MPSR curing agents. The CF before and after the sizing treatment-reinforced MPSR composites were prepared by a compression molding method. The microstructures, interfacial properties, and impact toughness of CF were systematically investigated. Experimental results revealed that a thin layer of MPSR coating containing functionalized MWCNTs (MWCNT-TEPA) was uniformly grafted onto the surface of CF. The sized CF-reinforced MPSR composite showed simultaneously remarkable enhancement in the interlaminar shear strength and impact toughness. Meanwhile, the tensile strength of CF had no obvious decrease after sizing treatment. In addition, the interfacial reinforcing and toughening mechanisms were also discussed. We believe that the facile and effective method in preparing multifunctional fibers provides a novel interface design strategy of carbon fiber composites for different applications.  相似文献   

14.
Interests in improving poor interfacial adhesion in carbon fiber‐reinforced polymer (CFRP) composites has always been a hotspot. In this work, four physicochemical surface treatments for enhancing fiber/matrix adhesion are conducted on carbon fibers (CFs) including acid oxidation, sizing coating, silane coupling, and graphene oxide (GO) deposition. The surface characteristics of CFs are investigated by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, interfacial shear strength, and interlaminar shear strength. The results showed that GO deposition can remarkably promote fiber/matrix bonding due to improved surface reactivity and irregularity. In comparison, epoxy sizing and acid oxidation afford enhancement of IFSS owing to effective molecular chemical contact and interlocking forces between the fiber and the matrix. Besides, limited covalent bonds between silane coupling and epoxy matrix cannot make up for the negative effects of excessive smoothness of modified CFs, endowing them inferior mechanical properties. Based on these results, three micro‐strengthening mechanisms are proposed to broadly categorize the interphase micro‐configuration of CFRP composite, namely, “Etching” “Coating”, and “Grafting” modifications, demonstrating that proper treatments should be chosen for combining optimum interfacial properties in CFRP composites. POLYM. ENG. SCI., 59:625–632, 2019. © 2018 Society of Plastics Engineers  相似文献   

15.
The Graphene oxide (GO) sheets were used for preparing the epoxy resin Pickering emulsion. The particle size and the zeta potential of the Pickering emulsion were measured to evaluate its stability. The stable emulsion could be served as the film former of sizing agent for carbon fiber (CF). The effect of the Pickering emulsion stabilized by GO sheets on the properties of CF and the interfacial adhesion property of CF reinforced composite were investigated. Scanning electron microscopy (SEM) images showed that there existed a layer of sizing agent film with GO sheets evenly on the CF surface. Abrasion resistance and stiffness values of CF were tested and the results indicated that the sized CF conformed to the requirement of CF handleability. The interlaminar shear strength (ILSS) test indicated that the interfacial adhesion of the composite could be greatly improved. The fracture surfaces of CF composites were examined by SEM after ILSS tests. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42285.  相似文献   

16.
Kenaf fiber (KF) reinforced recycled polypropylene (RPP) composites were produced by melt cast method. To improve interfacial adhesion between fiber and RPP matrix, fiber surface modification was carried out by means of ultrasound treatment. Maleic anhydride grafted polypropylene (MAPP) was used as a coupling agent. Composites were examined by mechanical test, melt flow indexing test, scanning electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Water uptake analysis and accelerated weathering test were carried out to find the suitability of the composites in outdoor application. Among the raw fiber contents ranging 10?50 wt % in the composites, the maximum tensile strength (TS) was observed at 40 wt % KF loading without using MAPP. Treated KF‐based composite with MAPP promotes this maximum TS value, which is 57% higher than that of raw KF‐based composite. TGA and DSC analyses exhibit an enhancement of thermal stability in treated KF‐reinforced RPP composites with MAPP. Incorporation of MAPP in the composites shows higher activation energy, suggesting improved interfacial bonding between fibers and matrix. Response surface method was employed to demonstrate the optimal treatment parameters for TS, showing excellent agreement with the observed values. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The influence of the degree of crystallinity on interfacial properties in carbon and SiC two‐fiber reinforced poly(etheretherketone) (PEEK) composites was investigated by the two‐fiber fragmentation test. This method provides a direct comparison of the same matrix conditions. The tensile strength of the PEEK matrix and the interfacial shear strength (IFSS) of carbon or SiC fiber/PEEK exhibited the maximum values at around 30% crystallinity, and then showed a decline. The tensile modulus increased continuously with an increase in the degree of crystallinity. Spherulite sizes in the PEEK matrix became larger as the cooling time from the crystallization temperature increased. Transcrystallinity of carbon fiber/PEEK was developed easily and more densely than with SiC fiber/PEEK. This might have occurred because the unit cell dimensions of the crystallite in the fiber axis direction on the carbon surface was more suitable for making nucleation sites. The IFSS of carbon fiber/PEEK was significantly higher than that of SiC fiber/PEEK because it formed transcrystallinity of IFSS more favorably.  相似文献   

18.
Two kinds of polyhedral oligomeric silsesquioxane (POSS) coatings were used for the modification of the interface in carbon fiber (CF) reinforced polyarylacetylene (PAA) matrix composites. The effects of the organic–inorganic hybrid POSS coatings on the properties of the composites were studied with short‐beam‐bending, microdebonding, and impact tests. The interlaminar shear strength and interfacial shear strength showed that the POSS coatings resulted in an interfacial property improvement for the CF/PAA composites in comparison with the untreated ones. The impact‐test results implied that the impact properties of the POSS‐coating‐treated composites were improved. The stiffness of the interface created by the POSS coatings was larger than that of the fiber and matrix in the CF/PAA composites according to the force‐modulation‐mode atomic force microscopy test results. The rigid POSS interlayer in the composites enhanced the interfacial mechanical properties with a simultaneous improvement of the impact properties; this was an interesting phenomenon in the composite‐interface modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5202–5211, 2006  相似文献   

19.
A water‐soluble epoxy resin was synthesized by the reaction between novolac epoxy resin (F‐51) and diethanolamine. Then, the modified F‐51 was mixed with poly(alkylene glycol allyl glycidyl ether) as a film former of a sizing agent. A series of water‐soluble sizing agents for carbon fiber (CF) were prepared. The modified F‐51 was analyzed by Fourier Transform infrared spectroscopy. The surface morphology of the CF was characterized by scanning electron microscopy. The effects of the sizing agent on the handling characteristics were investigated by abrasion resistance, fluffs, and breakage and stiffness tests. The results show that the abrasion resistance of the sized CF increased by 114.5% and reached 2344 times and the mass of fabric hairiness decreased to 3.2 mg. The interlaminar shear strength (ILSS) test indicated that the interfacial adhesion of the composite could be greatly improved. The ILSS of the sized CF composite could reach a maximum value of 42.40 MPa. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39843.  相似文献   

20.
Carbon fiber (CF), PU(polyurethane)-coated carbon fiber (CF-PU) and Ni-coated fiber (NCF) treated with a coupling agent (CA) were used to prepare composites for high impact polystyrene (HIPS) by melt blending. The optimum concentration of the titanate CA is 1.5 phf (per hundred parts of filler) when coupled with the carbon fibers. A composite prepared by adding a CA directly into the matrix which was then reinforced with fibers was investigated for comparison. These composites were evaluated for electromagnetic interference shielding effectiveness, dispersion, and adhesion between the polymer and the filler by means of scanning electron microscopy (SEM). The addition of CA generally improved the shielding effectiveness; this is especially apparent when the matrix was pretreated with CA before compounding with the fibers. The tensile properties were also improved upon CA addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号