首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a strategy for stabilizing the morphological integrity of electrospun polymeric nanofibers by heat stimuli in situ crosslinking. Amorphous polymer nanofibers, such as polystyrene (PS) and its co‐polymers tend to lose their fiber morphology during processing at temperatures above their glass transition temperature (Tg) typically bound to happen in nanocomposite/structural composite applications. As an answer to this problem, incorporation of the crosslinking agents, phthalic anhydride (PA) and tributylamine (TBA), into the electrospinning polymer solution functionalized by glycidylmethacrylate (GMA) copolymerization, namely P(St‐co‐GMA), is demonstrated. Despite the presence of the crosslinker molecules, the electrospinning polymer solution is stable and its viscosity remains unaffected below 60 °C. Crosslinking reaction stands‐by and can be thermally stimulated during post‐processing of the electrospun P(St‐co‐GMA)/PA‐TBA fiber mat at intermediate temperatures (below the Tg). This strategy enables the preservation of the nanofiber morphology during subsequent high temperature processing. The crosslinking event leads to an increase in Tg of the base polymer by 30 °C depending on degree of crosslinking. Crosslinked nanofibers are able to maintain their nanofibrous morphology above the Tg and upon exposure to organic solvents. In situ crosslinking in epoxy matrix is also reported as an example of high temperature demanding application/processing. Finally, a self‐same fibrous nanocomposite is demonstrated by dual electrospinning of P(St‐co‐GMA) and stabilized P(St‐co‐GMA)/PA‐TBA, forming an intermingled nanofibrous mat, followed by a heating cycle. The product is a composite of crosslinked P(St‐co‐GMA)/PA‐TBA fibers fused by P(St‐co‐GMA) matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44090.  相似文献   

2.
The transparent poly(butyl acrylate‐co‐maleic anhydride)/silica [P(BA‐co‐MAn)/SiO2] has been successfully prepared from butyl acrylate‐maleic anhydride copolymer P(BA‐co‐MAn) and tetraethoxysilane (TEOS) in the presence of 3‐aminopropyltriethoxysilane (APTES) by an in situ sol–gel process. Triethoxysilyl group can be readily incorporated into P(BA‐co‐MAn) as pendant side chains by the aminolysis of maleic anhydride unit of copolymer with APTES, and then organic polymer/silica hybrid materials with covalent bonds between two phases can be formed via the hydrolytic polycondensation of triethoxysilyl group‐functionalized polymer with TEOS. It was found that the amount of APTES could dramatically affect the gel time of sol–gel system, the sol fraction of resultant hybrid materials, and the thermal properties of hybrid materials obtained. The decomposition temperature of hybrid materials and the final residual weight of thermogravimetry of hybrid both increase with the increasing of APTES. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the morphology of hybrid materials prepared in the presence of APTES was a co‐continual phase structure. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 419–424, 1999  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with α,ω‐diamino poly(propylene oxide) (Jeffamine) of different molecular weights and crosslinked with poly(acrylonitrile‐co‐glycidyl methacrylate) [P(AN‐GMA)] to prepare a novel nanocomposite for applications in gel polymer electrolytes (GPEs). The synthesized copolymer was characterized by 1H‐NMR, Fourier transform infrared, and thermal analysis. Scanning electron microscope observation revealed that the Jeffamine‐functionalized MWCNTs distributed uniformly in the nanocomposite membrane. The mechanical behaviors of the nanocomposite membranes were investigated. It was found that the crosslinked nanocomposite membranes of P(AN‐GMA) and Jeffamine‐functionalized MWCNTs exhibited much higher mechanical strength than the counterpart nanocomposite obtained by physical blending. Moreover, the weight content and molecular weights of Jeffamine had an effect on the mechanical properties of the nanocomposites. Differential scanning calorimeter measurements showed that the crosslinked nanocomposite membranes were amorphous. GPEs based on the nanocomposite were prepared and characterized by complex impedance measurements. The GPE based on the nanocomposite of P(AN‐GMA) crosslinked with 6 wt % of MWCNTs functionalized by Jeffamine D400 showed an ionic conductivity of about 3.39 × 10?4 S cm?1 at 25°C, which is much higher than the counterpart nanocomposite of physically blended P(AN‐GMA) and MWCNTs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Novel biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)]/organoclay nanocomposites were prepared via solution casting. Exfoliated nanocomposite structure was confirmed by wide‐angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) for the nanocomposites with low organoclay loadings (≤3 wt%), whereas the mixtures of exfoliated and unexfoliated organoclays were appeared in the nanocomposite with an organoclay content of 5 wt%. The organoclay fillers accelerated significantly the cold crystallization process of P(3HB‐co‐4HB) matrix. The thermal stability of the nanocomposites was in general better than that of pristine P(3HB‐co‐4HB). Considerable increase in tensile modulus was observed for the nanocomposites, especially at an organoclay content of 3 wt%. These results demonstrated that the nanocomposites improved the material properties of P(3HB‐co‐4HB). POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
Styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) and styrene‐b‐(ethylene‐co‐propylene) (SEP, SEPSEP) block copolymers with different styrene contents and different numbers of blocks in the copolymer chain were functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed as compatibilizers for PET‐based blends. Binary blends of PET with both functionalized (SEBS‐g‐GMA, SEP‐g‐GMA, SEPSEP‐g‐GMA) and neat (SEBS, SEP, SEPSEP) copolymers (75 : 25 w/w) and ternary blends of PET and PP (75 : 25 w/w) with various amounts (2.5–10 phr) of both modified and unmodified copolymers were prepared in an internal mixer, and their properties were evaluated by SEM, DSC, melt viscosimetry, and tensile and impact tests. The roles of the chemical structure, grafting degree, and concentration of the various copolymers on blend compatibilization was investigated. The blends with the grafted copolymers showed a neat improvement of phase dispersion and interfacial adhesion compared to the blends with nonfunctionalized copolymers. The addition of grafted copolymers resulted in a marked increase in melt viscosity, which was accounted for by the occurrence of chemical reactions between the epoxide groups of GMA and the carboxyl/hydroxyl end groups of PET during melt mixing. Blends with SEPSEP‐g‐GMA and SEBS‐g‐GMA, at concentrations of 5–10 phr, showed a higher compatibilizing effect with enhanced elongation at break and impact resistance. The effectiveness of GMA‐functionalized SEBS was then compared to that of maleic anhydride–grafted SEBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2201–2211, 2005  相似文献   

6.
New hybrid poly(hydroxyethyl methacrylate‐co‐methyl methacrylate)‐g‐polyhedral oligosilsesquioxane [poly(HEMA‐co‐MMA)‐g‐POSS] nanocomposites were synthesized by the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry using a grafting to protocol. Initially, the random copolymer poly(HEMA‐co‐MMA) was prepared by RAFT polymerization of HEMA and MMA. Alkynyl side groups were introduced onto the polymeric backbones by esterification reaction between 4‐pentynoic acid and the hydroxyl groups on poly(HEMA‐co‐MMA). Azide‐substituted POSS (POSS? N3) was prepared by the reaction of chloropropyl‐heptaisobutyl‐substituted POSS with NaN3. The click reaction of poly(HEMA‐co‐MMA)‐alkyne and POSS? N3 using CuBr/PMDEATA as a catalyst afforded poly(HEMA‐co‐MMA)‐g‐POSS. The structure of the organic/inorganic hybrid material was investigated by Fourier transformed infrared, 1H‐NMR, and 29Si‐NMR. The elemental mapping analysis of the hybrid using X‐ray photoelectron spectroscopy and EDX also suggest the formation of poly(HEMA‐co‐MMA)‐anchored POSS nanocomposites. The XRD spectrum of the nanocomposites gives evidence that the incorporation of POSS moiety leads to a hybrid physical structure. The morphological feature of the hybrid nanocomposites as captured by field emission scanning electron microscopy and transmission electron microscopic analyses indicate that a thick layer of polymer brushes was immobilized on the POSS cubic nanostructures. The gel permeation chromatography analysis of poly(HEMA‐co‐MMA) and poly(HEMA‐co‐MMA)‐g‐POSS further suggests the preparation of nanocomposites by the combination of RAFT and click chemistry. The thermogravimetric analysis revealed that the thermal property of the poly(HEMA‐co‐MMA) copolymer was significantly improved by the inclusion of POSS in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
A novel phosphorus‐containing poly (ethylene terephthalate) (PET) copolyester/nano‐SiO2 composite (PET‐co‐DDP/SiO2) was synthesized by in situ polycondensation of terephthalic acid (TPA), ethylene glycol (EG), [(6‐oxide‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl)‐methyl]‐butanedioic acid (DDP), and nano‐SiO2. The morphology of PET nanocomposites was observed by using transmission electron microscope and scanning electron microscope. It was found that the SiO2 nanoparticles were dispersed uniformly at nanoscale in the copolyesters with content 2 wt %. The thermal degradation behavior of PET nanocomposites was investigated by thermogravimetric analysis performed with air and nitrogen ambience. The activation energies of thermal degradation were determined using Kissinger and Flynn–Wall–Ozawa methods, respectively. The results obtained from Kissinger method showed that the activation energy was increased with the introduction of SiO2. Moreover, the activation energy is decreased for PET‐co‐DDP system in nitrogen and air. The results also indicated that the SiO2 and DDP had synergic effect on the early decomposition and the late charring in air. Furthermore, in the PET‐co‐DDP/SiO2 system, the activation energy increased when the DDP component increased. However, the opposite results were obtained when the Flynn–Wall–Ozawa method was used. That was because the Doyle approximation stands correct as the conversion degree is from 5% to 20%. The effects of SiO2 and DDP on the PET thermal degradation were lower in nitrogen than in air. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Poly(butylene adipate‐co‐terephthalate) (PBAT) composites containing silver‐silica (Ag‐SiO2) were prepared using an in‐situ sol–gel process. Maleic anhydride‐grafted PBAT (PBAT‐g‐MA) and multihydroxyl‐functionalized Ag‐SiO2 were used to improve the compatibility and dispersibility of Ag‐SiO2 within the PBAT matrix. The composites were characterized morphologically using transmission electron microscopy and chemically using Fourier transform infrared spectrometry. The existence of Ag‐SiO2 nanoparticles on the substrate was confirmed by the ultraviolet–visible absorption spectra. The antibacterial and antistatic properties of the composites were evaluated whether SiO2 enhanced the electrical conductivity was tested as well as whether Ag enhanced the antibacterial activity of the PBAT‐g‐MA/SiO2 or PBAT/SiO2 composites. The PBAT‐g‐MA/SiO2 or PBAT/SiO2 composite that contained Ag had better antibacterial activity (more than 1.3‐fold). The functionalized PBAT‐g‐MA/Ag‐SiO2 composite can markedly enhanced antibacterial and antistatic properties due to the carboxyl groups of maleic anhydride, which acted as coordination sites for the Ag‐SiO2 phase, allowing the formation of stronger chemical bonds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)]/silica nanocomposites were prepared by melt compounding. The effects of silica on the morphology, crystallization, thermal stability, mechanical properties, and biodegradability of P(3HB‐co‐4HB) were investigated. The nanoparticles showed a fine and homogeneous dispersion in the P(3HB‐co‐4HB) matrix for silica contents below 5 wt%, whereas some aggregates were detected with further increasing silica content. The addition of silica enhanced the crystallization of P(3HB‐co‐4HB) in the nanocomposites due to the heterogeneous nucleation effect of silica. However, the crystal structure of P(3HB‐co‐4HB) was not modified in the presence of silica. The thermal stability of P(3HB‐co‐4HB) was enhanced by the incorporation of silica. Silica was an effective reinforcing agent for P(3HB‐co‐4HB), and the modulus and tensile strength of the nanocomposites increased, whereas the elongation at break decreased with increasing silica loading. The exciting aspect of this work was that the rate of enzymatic degradation of P(3HB‐co‐4HB) was enhanced significantly after nanocomposites preparation. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
The dispersion of attapulgite (APT) as nanorod‐like single crystals is crucial to fully develop its functionality of one‐dimensional nanometer material as a filler of composite materials. In this study, APT was dispersed by the assistance of ethanol during the high‐pressure homogenization process to form individual nanorod‐like crystals. The dispersed APT was used to prepare new sodium alginate‐g‐poly(sodium acrylate‐co‐styrene)/attapulgite (NaAlg‐g‐P(NaA‐co‐St)/APT) superabsorbent nanocomposites. The effect of ethanol/water ratio on the dispersion of crystal bundles of APT was investigated by field emission scanning electron microscopy, and the results indicate that APT crystal bundles were effectively disaggregated in ν(CH3CH2OH) : ν(H2O) ? 5 : 5 solution after homogenized at 50 MPa. The better dispersion of APT in NaAlg‐g‐P(NaA‐co‐St) matrix has clearly improved the gel strength (from 1300 Pa to 1410 Pa, ω = 100 rad/s), swelling capacity (442–521 g/g), swelling rate (3.3303–4.5736 g/g/s), and reswelling ability of the superabsorbent nanocomposite. Moreover, the nanocomposites showed fast swelling–deswelling responsive behavior in different saline solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Copolymer such as poly(styrene‐co‐butylacrylate‐co‐hydroxyethyl methacrylate) p (St‐BA‐HEMA) was prepared via free radical emulsion polymerization method. The resulting copolymer was converted to silicone secondary crosslinked interpenetrating polymer network (IPN) by condensation reaction with tetraethyl orthosilicate (TEOS). The obtained copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR). Thermal properties of the copolymers were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Optical microscopy (OM) is used for studying the morphology, and then the effects of silicone concentrations, the reflux time, and composition on the phase morphology of P (St‐BA‐HEMA)‐SiO2 IPNs were discussed. The broadening of the transition region was observed with the prolongation of the reflux time, and the tendency for aggregation of silicone on the surface was observed with Teflon as substrate plate. However, an optically transparent film was easily achieved at higher temperature due to the chemical crosslink and physical entanglement between the two phases of P (St‐BA‐HEMA)‐SiO2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
In this research, poly(L ‐lactide‐co‐ε‐caprolactone) (PLACL) reinforced with well‐dispersed multiwalled carbon nanotubes (MWCNTs) nanocomposites were prepared by oxidization and functionalization of the MWCNT surfaces using oligomeric L ‐lactide (LA) and ε‐caprolactone (CL). It is found that the surface functionalization can effectively improve the dispersion and adhesion of MWCNTs in PLACL. The surface functionalization will have a significant effect on the physical, thermomechanical, and degradation properties of MWCNT/PLACL composites. The tensile modulus, yield stress, tensile strength, and elongation at break of composite increased 49%, 60%, 70%, and 94%, respectively, when the concentration of functionalized MWCNTs in composite is 2 wt %. The in vitro degradation rate of nanocomposites in phosphate buffer solution increased about 100%. The glass transition temperature (Tg) of composites was decreased when the concentration of functionalized MWCNTs is 0.5 wt %. With further increasing the concentration of functionalized MWCNTs, the Tg was increased. The degradation kinetics of nanocomposites can be engineered and functionalized by varying the contents of pristine or functionalized MWCNTs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Glycidyl methacrylate‐functionalized methyl methacrylate–butadiene (MB‐g‐GMA) copolymers were prepared via an emulsion polymerization process. These functionalized copolymers were blended with polylactide (PLA). Dynamic mechanical analysis and differential scanning calorimetry results showed that the addition of MB‐g‐GMA did not result in a marked change in the glass transition temperature of PLA. With an increase of MB‐g‐GMA content, the tensile strength of the blends decreased; however, the elongation at break and impact strength increased significantly. From scanning electron micrographs, there was large plastic deformation (shear yielding) in blends subjected to impact tests, which was an important energy‐dissipation process and led to a toughened polymer. Rheological investigation demonstrated that there was a significant dependence of viscosity on composition. When the MB‐g‐GMA content increased, the viscosity began to increase. © 2013 Society of Chemical Industry  相似文献   

14.
A series of the surface‐functionalized nano‐SiO2/polybenzoxazine (PBOZ) composites was produced, and an attempt was made to improve the toughness of PBOZ material, without sacrificing other mechanical and thermal properties. A benzoxazine functional silane coupling agent was synthesized to modify the surface of nano‐SiO2 particles, which were then mixed with benzoxazine monomers to produce the nano‐SiO2‐PBOZ nanocomposites. The notched impact strength and the bending strength of the nano‐SiO2‐PBOZ nanocomposites increase 40% and 50%, respectively, only with the addition of 3 wt % nano‐SiO2. At the same load of nano‐SiO2, the nano‐SiO2‐PBOZ nanocomposites exhibit the highest storage modulus and glass‐transition temperature by dynamic viscoelastic analysis. Moreover, the thermal stability of the SiO2/PBOZ nanocomposites was enhanced, as explored by the thermogravimetric analysis. The 5% weight loss temperatures increased with the nano‐SiO2 content and were from 368°C (of the neat PBOZ) to 379°C or 405°C (of the neat PBOZ) to 426°C in air or nitrogen with additional 3 wt % nano‐SiO2. The weight residue of the same nanocomposite was as high as 50% in nitrogen at 800°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Bisphenol A‐based epoxy acrylate (BABEA), a commercial ultraviolet (UV)‐curable material, was introduced as a new manufacturing material for facile fabrication of epoxy‐functionalized micro‐zone plates through UV‐initiated copolymerization using glycidyl methacrylate (GMA) as the functional monomer. The poly (BABEA‐co‐GMA) was highly transparent in visible range while highly opaque when the wavelength is less than 295 nm, and of high replication fidelity. X‐ray photoelectron spectroscope (XPS) results indicated the existence of epoxy groups on the surface of the poly (BABEA‐co‐GMA), which allowed for binding protein through an epoxy‐amino group reaction. A fabrication procedure was proposed for manufacturing BABEA based epoxy‐functionalized micro‐zone plates. The fabrication procedure was very simple; obviating the need of micromachining equipments, wet etching or imprinting techniques. To evaluate the BABEA‐based epoxy‐functionalized micro‐zone plates, α‐fetoprotein (AFP) was immobilized onto the capture zone for chemiluminescent (CL) detection in a noncompetitive immune response format. The proposed AFP immunoaffinity micro‐zone plate was demonstrated as a low cost, flexible, homogeneous, and stable assay for α‐fetoprotein (AFP). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39787.  相似文献   

16.
Chemical and thermal characterization of poly(d ,l ‐lactide‐co‐glycolide) (PLGA) composites filled with hydroxyapatite (HA) or carbon nanotubes (CNT) were evaluated by infrared spectroscopy, differential scanning calorimetry, thermogravimetry, and dynamic–mechanical–thermal analysis. The morphology and distribution of the nanoparticles were studied by transmission electron microscopy. The composites were prepared by solvent casting using 30% HA or 1, 3, and 5% of pristine and functionalized CNT as nanoparticles and PLGA 75:25 and PLGA 50:50 as copolymer matrix. The Coats–Redfern and E2 function methodologies were used to calculate the reaction order and the activation energy (Ea) of the thermal degradation process. It was found that the addition of nanoparticles increased the glass transition temperature (Tg) of the composites. Also, higher degradation temperatures and Ea values were obtained for PLGA–HA composites and compared with the neat copolymer, and the opposite behavior was exhibited by PLGA–CNT composites. The thermal and mechanical properties were highly dependent on the morphology and dispersion of the filler. The functionalization process of CNT promoted, to some extent, a better distribution and dispersion of CNT into the matrix, and these composites exhibited a slight enhancement on storage modulus. On the other hand, PLGA–HA composites showed a good dispersion but no improvement on the storage modulus below Tg. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
In the present study, it has been demonstrated that polystyrene‐g‐polycaprolactone (PS‐g‐PCL) was successfully prepared by “click chemistry.” For this purpose, first, poly(styrene‐co‐4‐chloromethylstyrene) (P(S‐co‐CMS)) with 4‐chloromethylstyrene content (10%) was synthesized. Second, alkyne‐functionalized polycaprolactone (PCL) was obtained using propargyl alcohol and caprolactone. P(S‐co‐CMS) and PCL were reacted in N,N‐dimethylformamide for 24 h at 25°C to give PS‐g‐PCL. The synthesized polymer was characterized by nuclear magnetic resonance (1H‐NMR), gel permeation chromatography, Fourier transform infrared spectroscopy and thermogravimetric analysis. The apparent activation energies for thermal degradation of PS‐g‐PCL were obtained by differential (Kissenger) and integral methods (Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Tang, Coats–Redfern, Van Krevelen et al.). The decomposition mechanism and pre‐exponential factor were calculated in terms of Coats–Redfern method. The most likely decomposition processes of first and second degradation stages were An type and F3 type, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Polystyrene/organoclay nanocomposites were prepared by melt intercalation in the presence of elastomeric impact modifiers. Three different types of organically modified montmorillonites; Cloisite® 30B, 15A, and 25A, were used as reinforcement, whereas poly [styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA) and poly(ethylene‐b‐butyl acrylate‐b‐glycidyl methacrylate) (E‐BA‐GMA) elastomeric materials were introduced to act as impact modifier. Owing to its single aliphatic tail on its modifier and absence of hydroxyl groups, Cloisite® 25A displayed the best dispersion in the polystyrene matrix, and mostly delaminated silicate layers were obtained in the presence of SEBS‐g‐MA. This was attributed to the higher viscosity of SEBS‐g‐MA compared with both E‐BA‐GMA and poly(styrene‐co‐vinyloxazolin) (PS). In addition, the compatibility between SEBS‐g‐MA and PS was found to be better in comparison to the compatibility between E‐BA‐GMA and PS owing to the soluble part of SEBS‐g‐MA in PS. The clay particles were observed to be located mostly in the dispersed phase leading to larger elastomeric domains compared with binary PS/elastomer blends. The enlargement of the elastomeric domains resulted in higher impact strength values in the presence of organoclay. Good dispersion of Cloisite® 25A in PS/SEBS‐g‐MA blends enhanced the tensile properties of this nanocomposite produced. It was observed that the change in the strength and stiffness of the ternary nanocomposites mostly depend on the type of the elastomeric material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
We report a facile strategy for fabricating fluorescent quantum dot (QD)‐loaded microbeads by means of microfluidic technology. First, a functional fluorine‐containing microemulsion was synthesized with poly[(2‐(N‐ethylperfluorobutanesulfonamido)ethyl acrylate)‐co‐(methyl methacrylate)‐co‐(butyl acrylate)] (poly(FBMA‐co‐MMA‐co‐BA)) as the core and glycidyl methacrylate (GMA) as the shell via differential microemulsion polymerization. Then, CdTe QDs capped with N‐acetyl‐l ‐cysteine (NAC) were assembled into the poly(FBMA‐co‐MMA‐co‐BA‐co‐GMA) microemulsion particles through the reaction of the epoxy group on the shell of the microemulsion and the carboxyl group of the NAC ligand capped on the QDs. Finally, fluorescent microbeads were fabricated using the CdTe QD‐loaded fluorine‐containing microemulsion as the discontinuous phase and methylsilicone oil as the continuous phase by means of a simple microfluidic device. By changing flow rate of methylsilicone oil and hybrid microemulsion system, fluorescent microbeads with adjustable sizes ranging from 290 to 420 µm were achieved. The morphology and fluorescent properties of the microbeads were thoroughly investigated using optical microscopy and fluorescence microscopy. Results showed that the fluorescent microbeads exhibited uniform size distribution and excellent fluorescence performance. © 2014 Society of Chemical Industry  相似文献   

20.
An easy and efficient approach by using carboxyl functionalized CNTs (CNT‐COOH) as nano reinforcement was reported to develop advanced thermosetting composite laminates. Benzoxazine containing cyano groups (BA‐ph) grafted with CNTs (CNT‐g‐BA‐ph), obtained from the in situ reaction of BA‐ph and CNT‐COOH, was used as polymer matrix and processed into glass fiber (GF)‐reinforced laminates through hot‐pressed technology. FTIR study confirmed that CNT‐COOH was bonded to BA‐ph matrices. The flexural strength and modulus increased from 450 MPa and 26.4 GPa in BA‐ph laminate to 650 MPa and 28.4 GPa in CNT‐g‐BA‐ph/GF composite, leading to 44 and 7.5% increase, respectively. The SEM image observation indicated that the CNT‐COOH was distributed homogeneously in the matrix, and thus significantly eliminated the resin‐rich regions and free volumes. Besides, the obtained composite laminates showed excellent thermal and thermal‐oxidative stabilities with the onset degradation temperature up to 624°C in N2 and 522°C in air. This study demonstrated that CNT‐COOH grafted on thermosetting matrices through in situ reaction can lead to obvious mechanical and thermal increments, which provided a new and effective way to design and improve the properties of composite laminates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号