首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
An investigation was reported here with an aim to prepare nanocomposite thermoplastic elastomer gels by dissolving polystyrene‐b‐poly(ethylene/butylene)‐b‐polystyrene (SEBS) triblock copolymer in selective hydrocarbon oils with the presence of multiwalled carbon nanotubes (MWCNTs). The properties related to morphology, viscoelasticity, electrical and mechanical properties, and thermal stability were explored and discussed. Dynamic rheological measurements of the resultant nanocomposite thermoplastic elastomer gels (NCTPEGs) confirmed that addition of MWCNTs affects the linear viscoelastic properties in which dynamic storage and loss moduli increase to some extent. At a temperature between 30°C and 40°C below the gel point the NCTPEGs have dynamic storage modulus greater than loss modulus (G′ and G″), thereby indicating that at room temperature a physical network is still present despite the addition of MWCNTs. The morphological properties revealed that MWCNTs were dispersed and exfoliated within the swollen TPE. The incorporation of small quantity of MWCNTs improved the thermal stability and mechanical properties of NCTPEGs. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
Composites of two hot melt adhesives based on co‐polyamides, one high viscosity (coPA_A), the other low viscosity (coPA_B), and multiwalled carbon nanotubes (MWCNTs) were prepared using twin‐screw extrusion via dilution of masterbatches. Examination of these composites across the length scales confirmed that the MWCNTs were uniformly dispersed and distributed in the polymer matrices, although some micron size agglomerations were also observed. A rheological percolation was determined from oscillatory rheology measurements at a mass fraction of MWCNTs below 0.01 for coPA_B and, between 0.01 and 0.02 for coPA_A. Significant increases in complex viscosity and storage modulus confirmed the “pseudo‐solid” like behavior of the composite materials. Electrical percolation, determined from dielectric spectroscopy was, found to be at 0.03 and 0.01 MWCNT mass fraction for coPA_A and coPA_B based composites, respectively. Addition of MWCNTs resulted in heterogeneous nucleation and altered the crystallization kinetics of both copolymers. Indirect evidence from contact angle measurements and surface energy calculations confirmed that MWCNT addition enhanced the adhesive properties of coPA_B to a level similar to coPA_A. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45999.  相似文献   

3.
In this study, nanocomposites of polypropylene (PP) with various loadings of multi‐wall carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were formed by masterbatch dilution/mixing approach from individual masterbatches PP‐MWCNT and PP‐GnP. Melt mixing on a twin‐screw extruder at two different processing temperatures was followed by characterization of morphology by transmitted‐light microscopy including the statistical analysis of agglomeration behavior. The influence of processing temperature and weight fractions of both nanofillers on the dispersion quality is reported. Thermal properties of the nanocomposites investigated by DSC and TGA show sensitivity to the nanofillers weight fraction ratio and to processing conditions. Electrical conductivity is observed to increase up to an order of magnitude with the concentration of each nanofiller increasing from 0.5 wt % to 1.0 wt %. This is related with a decrease of electrical conductivity observed for unequal concentration of both nanofillers. This particular behavior shows the increase of electrical properties for higher MWCNT loadings and the increase of thermo‐mechanical properties for higher GnP loadings. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42793.  相似文献   

4.
Multiwalled carbon nanotube (MWNT)–polyurethane (PU) composites were obtained by an in situ polycondensation approach. The effects of the number of functional groups on the dispersion and mechanical properties were investigated. The results showed that the functionalized MWNTs had more advantages for improving the dispersion and stability in water and N,N′‐dimethylformamide. The tensile strength and elongation at break of the composites exhibited obvious increases with the addition of MWNT contents below 1 wt % and then decreases with additions above 1 wt %. The maximum values of the tensile strength and elongation at break increased by 900 and 741%, respectively, at a 1 wt % loading of MWNTs. Differential scanning calorimetry measurements indicated that the addition of MWNTs resulted in an alteration of the glass‐transition temperature of the soft‐segment phase of MWNT–PU. Additionally, new peaks near 54°C were observed with differential scanning calorimetry because of the microphase‐separation structures and alteration of the segment molecular weights of the hard segment and soft segment of PU with the addition of MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
In this study, styrene‐butadiene‐styrene tri‐block copolymer/multiwalled carbon nanotubes (SBS/MWNTs) were prepared by means of a solution blending method. To enhance the compatibility between SBS and MWNTs, the SBS grafted MWNTs (SBS‐g‐MWNTs) were used to replace MWNTs. The MWNTs were chemically hydroxylated by the dissolved KOH solution with ethanol as solvent and then reacted with 3‐Aminopropyltriethoxysilane (APTES) to functionalize them with amino groups (MWNT‐NH2). The SBS‐g‐MWNTs were finally obtained by the reaction of MWNT‐NH2 and maleic anhydride grafted SBS (MAH‐g‐SBS). The SBS‐g‐MWNTs were characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform‐infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The results showed that the SBS molecules were homogeneously bonded onto the surface of the MWNTs, leading to an improvement of the mechanical and electrical properties of SBS/SBS‐g‐MWNTs composites due to the excellent interfacial adhesion and dispersion of SBS‐g‐MWNTs in SBS. A series of continuous tests were carried out to explore the electrical‐mechanical properties of the SBS/SBS‐g‐MWNTs composites. We found out that, near the percolation threshold, the well‐dispersed SBS/SBS‐g‐MWNTs composites showed good piezoresistive characteristics and small mechanical destructions for the development of little deformation under vertical pressure. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42945.  相似文献   

6.
In this work we have studied the utilization of multiwalled carbon nanotubes (MWCNTs) as filler‐reinforcement to improve the performance of plasticized starch (PS). The PS/MWCNTs nanocomposites were successfully prepared by a simple method of solution casting and evaporation. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of scanning electron microscopy, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile testing. The results indicated that the MWCNTs dispersed homogeneously in the PS matrix and formed strong hydrogen bonding with PS molecules. Compared with the pure PS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 2.85 to 4.73 MPa and from 20.74 to 39.18 MPa with an increase in MWCNTs content from 0 to 3.0 wt %, respectively. The value of elongation at break of the nanocomposites was higher than that of PS and reached a maximum value as the MWCNTs content was at 1.0 wt %. Besides the improvement of mechanical properties, the incorporation of MWCNTs into the PS matrix also led to a decrease of water sensitivity of the PS‐based materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
8.
This article investigated the dispersion and modification of multiwalled carbon nanotubes (MWCNTs) through solution mixing based on the noncovalent interactions between polystyrene (PS) and MWCNTs. It was found that the interactions were robust enough to stabilize the debundled MWCNTs in solution after vigorous sonication. The PS attached, which altered the surface properties of MWCNTs and made them easily soluble in organic solvents, can remain even after careful washing with solvents. Besides, many other PS‐based polymers were proved to retain the ability to disperse MWCNTs to form stable solutions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Despite the development of strong, durable, and cost efficient polyisobutylene‐based polyurethane (PIB‐based PU) materials has yet to be achieved. The well dispersion and maximum interfacial interaction between the nanofiller and the PIB‐based PU at low loading have been scarcely studied. Here, the preparation of PIB‐based PU nanocomposites with Multiwalled carbon nanotubes (MWCNTs) using a simple in situ polymerization method is reported. The thermogravimetric analysis tests show that MWCNTs significantly improved the thermal stability of MWCNTs/PIB‐based PU nanocomposites. Compare to the pure PIB‐based PU the onset temperature of degradation for the nanocomposite was about 20°C higher at 0.7 wt% MWCNTs loading. Efficient load transfer is found between the nanofiller MWCNTs and PIB‐based PU and the mechanical properties of the MWCNTs/PIB‐based PU nanocomposite with well dispersion are improved. A 63% improvement of Young's modulus and slightly increased of tensile strength are achieved by addition of only 0.7 wt% of MWCNTs. The experimentally determined Young's modulus is in well agreement with the theoretical simulation. It is worth noting that the PIB‐based PU and MWCNTs/PIB‐based PU nanocomposites exhibit excellent damping properties (tan δ > 0.3) from −45°C to 8°C. POLYM. COMPOS., 36:198–203, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
In this work, a series of carbon nanotubes filled polypropylene (PP/CNT) and polyamide 6 (PA6/CNT) composites were prepared by melt blending and subsequently molded by compression molding and microinjection molding (μIM), respectively. Electrical conductivity results indicate that the percolation threshold of corresponding microparts shifted to higher filler concentrations when compared with that of compression molded counterparts, suggesting the prevailing shearing conditions in μIM is unfavorable for the construction of conductive pathways. In addition, Raman spectral analysis shows that there is a preferential alignment of CNTs along the flow direction of microparts. Thermal properties of both melt blended samples and subsequent microparts were evaluated using differential scanning calorimetry and thermogravimetric analysis. The mechanical properties of subsequent microparts are greatly affected by filler concentration, which might be related to the structural change that induced by the state of dispersion of CNTs.  相似文献   

11.
In this work, we analyzed tensile properties of polypropylene‐multiwalled carbon nonotubes composite fibers. The multiwalled carbon nanotubes (MWCNTS) were used in different contents of 0, 1, 2, 3, 4, and 5 wt %. Dispersing agents were used to disperse MWCNTs in polypropylene matrix. After the dispersing agent was removed, the mixture was melt mixed. The fibers were spun by a home‐made melt spinning equipment and stretching was done at a draw ratio of 7.5. By using 1–5 wt % of MWCNTs, the modulus of composite fibers increased by 69–84% and tensile strength increased about 39% when compared with the virgin polypropylene fibers. In addition, the MWCNTs dispersion in the matrix was monitored by scanning electron microscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Carbon nanofibers were produced from a polyacrylonitrile/N,N‐dimethylformamide precursor solution by an electrospinning process and later pyrolysis at temperatures ranging from 500 to 1100°C in an N2 atmosphere for about 1 h. The morphological structure of the nanofibers was studied with scanning electron microscopy. Scanning electron microscopy images of carbonized polyacrylonitrile nanofibers without a gold coating showed that the carbonized polyacrylonitrile nanofibers possessed electrical properties. The thermal behavior of the nanofibers was studied with thermogravimetric analysis. An indirect four‐point‐probe method was used for the measurement of the conductivity of nanofiber mats. The conductivity increased sharply with the pyrolysis temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
A series of multiwalled carbon nanotubes (MWCNTs) grafted by chitosan nanocomposite (NC) films were prepared by a direct blending process and solution casting method. In this study, we modified multiwalled carbon nanotubes with glucose (MWCNT–Gl) for this purpose, and the effects of MWCNT–Gl on the structural, mechanical, and thermal properties of chitosan films with different contents of MWCNT–Gl were investigated. The structure, thermal stability, and mechanical properties of the composite were examined by X‐ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and mechanical testing. The results indicate that the MWCNTs treated by glucose were dispersed well in the chitosan matrix, and the tensile properties of the NC films were improved greatly compared with neat chitosan. Also, with increasing MWCNT–Gl content, the crystalline nature of chitosan decreased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42022.  相似文献   

14.
Multiwalled carbon nanotube (MWCNT)/epoxy composites are prepared, and the characteristics and morphological properties are studied. Scanning electron microscopy microphotographs show that MWCNTs are dispersed on the nanoscale in the epoxy resin. The glass‐transition temperature (Tg) of MWCNT/epoxy composites is dramatically increased with the addition of 0.5 wt % MWCNT. The Tg increases from 167°C for neat epoxy to 189°C for 0.5 wt % CNT/epoxy. The surface resistivity and bulk resistivity are decreased when MWCNT is added to the epoxy resins. The surface resistivity of CNT/epoxy composites decreases from 4.92 × 1012 Ω for neat epoxy to 3.03 × 109 Ω for 1 wt % MWCNT/epoxy. The bulk resistivity decreases from 8.21 × 1016 Ω cm for neat epoxy to 6.72 × 108 Ω cm for 1 wt % MWCNT/epoxy. The dielectric constant increases from 3.5 for neat epoxy to 5.5 for 1 wt % MWCNT/epoxy. However, the coefficient of thermal expansion is not affected when the MWCNT content is less than 0.5 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1272–1278, 2007  相似文献   

15.
The thermal properties and mechanical properties are the key factors of phase‐change microcapsules (microPCMs) in energy‐storage applications. In this study, microPCMs based on an n‐octadecane (C18) core and a melamine–urea–formaldehyde (MUF) shell supplemented with O2‐plasma‐modified multiwalled carbon nanotubes (CNTs) were synthesized through in situ polymerization. Meanwhile, two different addition methods, the addition of modified CNTs into the emulsion system or into the polymer system, were compared and examined. Scanning electron microscopy micrographs showed that the microPCMs were spherical and had a broadened size distribution. Fourier transform infrared testing demonstrated that the modified CNTs did not affect C18 coated by MUF resin. The results indicate that the thermal conductivity and mechanical properties of the microPCMs were remarkably improved by the addition of a moderate amount of modified CNTs, but the heat enthalpy and encapsulated efficiency decreased slightly. Moreover, the thermal conductivity and mechanical properties of microPCMs modified with CNTs directly added to the polymer system were superior to those with CNTs added to emulsion system. In particular, when 0.2 g of modified CNTs were added to the polymer system, the thermal conductivity of the microPCMs was improved by 225%, and the breakage rates of the microPCMs at 4000 rpm for 5, 10, and 20 min decreased by 74, 72, and 60%, respectively, compared with that of the microPCMs without modified CNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45269.  相似文献   

16.
P(AN‐co‐VA‐co‐DEMA) terpolymers were synthesized by aqueous precipitation copolymerization of acrylonitrile (AN), vinyl acetate (VA), and 2‐dimethylamino ethyl methacrylate (DEMA) with an Na2S2O5–NaClO3 redox initiating system and fibers from these terpolymers were thus prepared by a wet spinning method. Functionalized multiwalled carbon nanotube (F‐MWNT) networks were created on the surface of P(AN‐co‐VA‐co‐DEMA) fibers by a simple dipping method. The morphology and interfacial interactions of the obtained F‐MWNTs‐coated fibers were characterized by scanning electron microscope, Raman spectroscopy, and Fourier transform infrared spectroscopy. The results showed that F‐MWNTs were assembled on the fibers and the density of F‐MWNTs can be controlled by adjusting the F‐MWNTs content in the dipping solution. The assembly process was driven by electrostatic interactions between the negative charges on the nanotube sidewalls and the positive charges of the fibers. The F‐MWNTs‐coated fibers had a good conductivity. The volume resistivity of the fibers coated with 1.18 wt % F‐MWNTs reached 0.27 Ω·cm, while the original mechanical properties were preserved. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42545.  相似文献   

17.
Three different industrially available multiwalled carbon nanotube (MWNT) materials were directly incorporated into polycarbonate by melt mixing using a small-scale compounder. Despite of similar aspect ratios the electrical percolation behaviour was different. TEM investigations reveal significant differences in the nanotube dispersion which can be attributed to different dispersability of the raw MWNT materials. It is shown that the investigation of the sedimentation behaviour of aqueous MWNT dispersions is a simple method to estimate the nanotube dispersability.The relationships between melt processing conditions and MWNT dispersion and distribution were studied on polycarbonate samples containing 0.875 wt% MWNT prepared by masterbatch dilution. During melt mixing only high shear forces can provide suitable MWNT dispersion because firstly the MWNT disentanglement is facilitated and secondly secondary agglomeration is prevented. At low shear agglomeration of formerly well dispersed MWNT could be observed. During hot pressing the network or MWNT arrangement and the resulting electrical conductivity can be manipulated by the processing conditions like melt temperature and pressing speed. A certain nanotube agglomeration can enhance the development of an electrical percolated network as shown by dielectric spectroscopy.  相似文献   

18.
In this study, experimental and numerical studies were performed to investigate the relationship among the functionalization method, weight fraction of MWCNTs, thermal imidization cycle, and mechanical properties of various PAI/MWCNT composite films. Poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were prepared by solution mixing and film casting. The effects of chemical functionalization and weight fraction of multiwalled carbon nanotubes on thermal imidization and mechanical properties were investigated through experimental and numerical studies. The time needed to achieve sufficient thermal imidization was reduced with increasing multiwalled carbon nanotube content when compared with that of a pure poly(amide‐co‐imide) film because multiwalled carbon nanotubes have a higher thermal conductivity than pure poly(amide‐co‐imide) resin. Mechanical properties of pure poly(amide‐co‐imide) and poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were increased with increasing imidization time and were improved significantly in the case of the composite film filled with hydrogen peroxide treated multiwalled carbon nanotubes. Both the tensile strength and strain to failure of the multiwalled carbon nanotube filled poly(amide‐co‐imide) film were increased substantially because multiwalled carbon nanotube dispersion was improved and covalent bonding was formed between multiwalled carbon nanotubes and poly(amide‐co‐imide) molecules. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Electrospinning process was used to fabricate fine fibers from poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyvalerate] embedded with multiwalled carbon nanotubes (MWCNTs). Rotating disc collector was used to provide additional drawing force to stretch and align both the embedded MWCNTs and electrospun fibers themselves. Morphological observation revealed MWCNTs aligned to the fiber axis and protruding from the surface. To understand the electrical properties of the fiber, a single‐composite fiber has been deposited on a substrate, across multiple electrodes. Electrical conductivity of the single‐electrospun fiber with low MWCNT content of 0.2 wt % was calculated to be in a remarkable magnitude of about 2.07 Sm?1. Electrical current flow spanning the fiber length of 1400 μm indicates that the presence of an interconnected network of MWCNTs exists within the fiber. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Starch/clay bionanocomposites were prepared by incorporation of varying concentrations of nanoclay (Cloisite® 30B) through solution blending. The chemical interaction of starch with clay was evidenced from ultraviolet‐visible (UV‐visible) and fourier transform infrared spectroscopy. The material was also characterized through X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy study. The bionanocomposites were found to be more thermally stable as revealed from thermogravimetric analysis. The fire retardancy of the bionanocomposites was investigated from limiting oxygen index measurement. The result showed improvement of this property with increase in clay loading. From the measurement of oxygen permeabilities, it was found that the oxygen barrier property of starch/clay (10%) was improved by more than three times compared to virgin starch. The biodegradability of the material combined with the above mentioned properties could make it applicable as food packaging material. POLYM. COMPOS., 35:1238–1243, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号