首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation sensitivity of cyclotrimethylenetrinitramine (RDX) was investigated as a function of crystal size. For this study, RDX powders with mean crystal sizes of ca. 200 and 500 nm were prepared by rapid expansion of supercritical solutions (RESS) with carbon dioxide as the solvent. Initiation sensitivity testing to impact, sustained shock, and electrostatic discharge stimuli was performed on uncoated as well as wax‐coated specimens. The test data revealed that in a direct comparison to coarser grades the nanocrystalline RDX‐based samples were substantially less sensitive to shock and impact stimuli. Furthermore, the 500 nm RDX‐based specimens exhibited the lowest sensitivity values, an indication that minima in shock and impact sensitivities with respect to crystal size exist.  相似文献   

2.
The shock sensitivities of plastic bonded explosives were studied with a thin flyer impact test by using two types of pressed RDX. The thin flyer, driven by an electrically exploding plasma, exerts a short‐duration, high‐pressure pulse to the samples to trigger a shock‐to‐detonation process. It was found that the duration and magnitude of the incident shock strongly influence the dominant mode of hot‐spot formation, promoting a fast pore collapsing mechanism while suppressing other slower shear or friction mechanisms, as proposed by Chakravarty et al. [1]. The pressed PBX based on reduced sensitivity RDX had higher shock threshold pressure, compared to the pressed PBX based on commercial RDX. The difference was observed even with a certain portion of external extragranular defects. It is postulated that the internal crystal defects are more efficient than the external porosity in terms of the rapid reaction of hot spots.  相似文献   

3.
The effect of N‐methyl‐2‐(3‐nitrophenyl)pyrrolidino[3′,4′:1,2]fullerene (mNPF) on the decomposition characteristics of hexogen (RDX) was investigated using differential scanning calorimetry (DSC). The results show that mNPF can accelerate the decomposition of RDX, the peak temperature (Tp) of the exothermal decomposition is reduced by 6.4 K, and the corresponding apparent activation energy (Ea) is decreased by 8.7 kJ mol−1. N‐methyl‐2‐(3‐nitrophenyl)pyrrolidino[3′,4′:1,2]fullerene (mNPF), carbon black (CB), and C60 were used as combustion catalysts to improve the combustion performance of a composite modified double‐base propellant containing RDX (RDX‐CMDB). The burning rate experimental results show that mNPF has a stronger catalytic effect than C60 and CB. The magnitude of the effect of the three carbon substances on the enhancement of the burning rate is as follows: mNPF>C60>CB. The catalytic effects of different contents of mNPF on the burning rates of RDX‐CMDB propellants were also studied, and the results show that the burning rates of RDX‐CMDB propellants are improved with increasing mNPF content. The plateau burning rate of a RDX‐CMDB propellant can be increased to 19.6 mm s−1 when 1.0 % mNPF is added, and the corresponding plateau combustion region occurs at 8–22 MPa.  相似文献   

4.
3,4,5‐Triamino‐1,2,4‐triazolium 5‐nitrotetrazolate ( 2 ) was synthesized in high yield from 3,4,5‐triamino‐1,2,4‐triazole (guanazine) ( 1 ) and ammonium 5‐nitrotetrazolate. The new compound 2 was characterized by vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 15N), elemental analysis and single crystal X‐ray diffraction (triclinic, P(‐1), a=0.7194(5), b=0.8215(5), c=0.8668(5) nm, α=75.307(5), β=70.054(5), γ=68.104(5)°, V=0.4421(5) nm3, Z=2, ϱ=1.722 g cm−1, R1=0.0519 [F>4σ(F)], wR2(all data)=0.1154). The 15N NMR spectrum and X‐ray crystal structure (triclinic, P‐1, a=0.5578(5), b=0.6166(5), c=0.7395(5) nm, α=114.485(5)°, β=90.810(5)°, γ=97.846(5)°, V=0.2286(3) nm3, Z=2, ϱ=1.658 g cm−1, R1=0.0460 [F>4σ(F)], wR2(all data)=0.1153) of 1 were also determined.  相似文献   

5.
TATB (1,3,5 triamino‐2,4,6‐trinitrobenzene), an extremely insensitive explosive, is used both in polymer‐bound explosives (PBXs) and as an ultra‐fine pressed powder (UFTATB). Many TATB‐based explosives, including LX‐17, a mixture of TATB and Kel‐F 800 binder, experience an irreversible expansion with temperature cycling known as ratchet growth. Additional voids, with sizes hundreds of nanometers to a few micrometers, account for much of the volume expansion. Measuring these voids is important feedback for hot‐spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding mechanisms for ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes, further extending PBX shelf life. This paper presents the void size distributions of LX‐17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between −55 and 70 °C. These void size distributions are derived from ultra‐small‐angle X‐ray scattering (USAXS), a technique sensitive to structures from about 2 nm to about 2 μm. Structures with these sizes do not appreciably change in UFTATB. Compared to TATB/Kel‐F 800, Cytop M and Cytop A show relatively small increases in void volume from 0.9 to 1.3% and 0.6 to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2–4.6%). Computational mesoscale models combined with experimental results indicate both high glass transition temperature as well as TATB binder adhesion and wetting are important to minimize ratchet growth.  相似文献   

6.
This work demonstrates the use of synchrotron‐based, transmission X‐ray microscopy (TXM) and scanning electron microscopy to image the 3‐D morphologies and spatial distributions of Ga‐doped phases within model, single‐ and two‐phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba1.04Cs0.24Ga2.32Ti5.68O16) could be readily imaged. The analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid‐state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. The results presented in this work represent a crucial step in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.  相似文献   

7.
A miniature rocket device integrating nanothermite and RDX is presented for shock initiation of high explosive application. This Ø 2.5 mm device consists in several assembled and screwed parts: a pyroMEMS chip with a Al/CuO multilayers on it to ignite within less than 100 μs a few milligrams of nanothermite, which reacts violently and ignites within 150 μs a RDX charge compacted in the closed combustion chamber. The gases generated by the RDX combustion rapidly expand, cut and propel a Ø 2.5 mm by 1 mm thick stainless steel flyer in the barrel. After the presentation of the rocket design, fabrication and assembly, by measuring the pressure‐time evolution in the chamber we demonstrate the advantage to ignite the RDX with Al/Bi2O3 nanothermite to optimize the pressure impulse. We show that the stainless steel flyer of 40 mg is properly cut and propelled at velocities calculated from 665 to 1083 m s−1 as a function of the RDX extent of compaction and ignition charge. As expected, the average flyer velocity increases with the mass of loaded RDX and flyer's shear thickness. We finally prove that the impact of the flyer can initiate directly in detonation a RDX explosive, which is very promising to remove primary explosives in detonator.  相似文献   

8.
2,4,6‐Triamino‐1,3,5‐trinitrobenzene (TATB) compounds are commonly used in high performance explosives because of their thermal stability and high detonation velocities compared to other materials. The insensitivity and mechanical properties are related to the stability of their crystalline structure. Crystallographic structure and structural defects evolution of TATB and TATB‐based compounds were studied by X‐ray diffraction for powders, molding powders, and pressed compounds, using Rietveld refinement. The effects of synthesis conditions, thermal treatments, coating and pressing operations on the structure of TATB compounds were evaluated. The results show that the pressing operation results in anisotropic crystallite size, leading to an increase of the structural defects density. It could be due to the anisotropic mechanical response of the TATB crystal under pressure, possibly plasticity. Finally, it is shown that increasing thermal treatment temperature on TATB powders decreases the structural defects density.  相似文献   

9.
This in situ soft X‐ray scanning microscopy electrochemical study of model proton exchange cathodic and anodic nano‐fuel cells is exploring the evolving structure and chemical composition of key cell components represented by Au and Fe electrodes in contact with Nafion‐ionic liquid composite electrolyte containing Pt black catalyst particles. Morphological and chemical changes of the electrodes as well as the chemical state and fate of the Fe species released into the electrolyte are monitored in short circuit and with applied cathodic or anodic polarization. The in situ X‐ray absorption images of the cathodic cell fed with 2.5 × 10–5 mbar O2 have revealed corrosion‐induced morphology changes in the Fe electrode, being more pronounced in the vicinity of Pt‐black particles, and deposition of the Fe species released into the electrolyte, onto the intact Au counter electrode upon cathodic polarization. The Fe electrodes of the anodic cell containing NaBH4 in the electrolyte appear relatively more corrosion resistant. The Fe L3 absorption spectra taken in different locations within the Fe electrode have shown lateral variations in the relative ratio between Fe2+ and Fe3&4+ oxidation states, whereas the Fe species released into the RTIL electrolyte are only in the high Fe3&4+ oxidation states.  相似文献   

10.
4,6‐Diazido‐N‐nitro‐1,3,5‐triazine‐2‐amine (DANT) was prepared with a 35 % yield from cyanuric chloride in a three step process. DANT was characterized by IR and NMR spectroscopy (1H, 13C, 15N), single‐crystal X‐ray diffraction, and DTA. The crystal density of DANT is 1.849 g cm−3. The cyclization of one azido group and one nitrogen atom of the triazine group giving tetrazole was observed for DANT in a dimethyl sulfoxide solution using NMR spectroscopy. An equilibrium exists between the original DANT molecule and its cyclic form at a ratio of 7 : 3. The sensitivity of DANT to impact is between that for PETN and RDX, sensitivity to friction is between that for lead azide and PETN, and sensitivity to electric discharge is about the same as for PETN. DANT′s heat of combustion is 2060 kJ mol−1.  相似文献   

11.
12.
Samples of random copolymers consisting of 1‐butene modified with a low ethylene content (4, 5, 8% by weight) produced with metallocene catalysts were studied to elucidate the polymorphic behavior of this new class of materials and to characterize them from a structural, morphological, and mechanical point of view. The samples cooled down from the melt are in amorphous phase and crystallize in a mixture of form I and I′ or in pure form I′ with aging time, according to the C2 content. Infrared and nuclear magnetic resonance spectroscopy, X‐ray diffraction and microscopic techniques were used to follow the changes of the material with aging time and to correlate the structural and morphological behavior with the peculiar mechanical properties that differentiate the samples with increasing C2 content. The presence, in the aged samples with higher C2 content, of the pure form I′ induces the peculiar ability to self‐welding and these copolymers combine high flexibility with good elasticity and ductility and can be processed directly or used as modifying agents in polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40119.  相似文献   

13.
Synchrotron radiation facilities have been established and become very familiar in the polymer community not only from academic but also industrial viewpoints. It is not so unusual now to conduct simultaneous measurements of small‐angle X‐ray scattering (SAXS) with other techniques such as wide‐angle X‐ray scattering, stress–strain, light scattering, and so forth. New techniques have also been established and have become more familiar in recent years. In this review, recent developments in polymer applications of synchrotron SAXS are summarized. Instrumental developments and progress in data analyses are reviewed from the following aspects: ultra‐small‐angle X‐ray scattering, anomalous SAXS, X‐ray photon correlation spectroscopy, new types of simultaneous measurements, grazing‐incidence SAXS, new trends in nanoparticle analyses and industrial applications. © 2016 Society of Chemical Industry  相似文献   

14.
Poly(vinyl alcohol) (PVA) films filled with different amounts of CrF3 and MnCl2 were prepared by the casting method. Differential scanning calorimetry (DSC) and X‐ray diffraction (XRD) analysis were used to study the changes in the structure properties that occurred because of filling. The changes occurring in the measured parameters with increasing filler contents were interpreted in terms of the structural modification of the PVA matrix. All the studied samples had a main melting temperature due to the main crystalline phase of PVA. The intensity and position of this peak depended on the filling level. However, the samples of CrF3‐filled PVA films with a filling level greater than or equal to 10 wt % revealed another melting temperature, which indicated the presence of a new crystalline phase in addition to the main crystalline phase. The changes that occurred in the degree of crystallinity of the studied samples were examined. The calculated degree of crystallinity was formulated numerically to be an exponential function of the filling level. The XRD patterns of the studied samples confirmed the DSC results. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1115–1120, 2003  相似文献   

15.
In the present article, we report the chemical synthesis and characterization of poly(aniline‐co‐fluoroaniline) [poly(An‐FAn)]. The copolymerization of aniline and 2‐fluoroaniline was carried out by chemical method in acidic medium. The characterization of poly(aniline‐co‐fluoroaniline) was done using FTIR, UV‐visible spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron micrography (SEM), and a four‐points‐probe conductivity method. X‐ray diffraction (XRD) and SEM characterization reveal crystalline nature of doped copolymer compared to undoped copolymer. The observed decrease in the conductivity of the copolymer relative to polyaniline is attributed to the incorporation of the fluoro moieties into the polyaniline chain. The chemically synthesized copolymer shows good solubility in common organic solvents, and is, therefore, technological useful. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1460–1466, 2001  相似文献   

16.
On account of the large compatibility difference between glass fiber‐reinforced Polyamide 66 (GFR‐PA66) and Polycarbonate (PC), it is difficult to weld them directly by laser. A new technology is introduced in this article by which the transparent PC is successfully welded with GFR‐PA66 using cold spraying in order to spray a 20 μm‐thick aluminum film on GFR‐PA66 as the absorbed layer. Tensile shear tests show the tensile strength of welded joints is highly enhanced. The influences of bubbles, glass fiber, and aluminum atoms on the performance of the joins are investigated via the optical microscope. X‐ray Photoelectron Spectrometer (XPS) is used to detect the chemical information of fracture sections on PC. In terms of the generation of bubbles, the influence of glass fiber, the distribution of aluminum atoms, and the formation of new chemical bonds, this article analyses the mechanism why the two different materials can be welded successfully. The micro‐anchor influence of glass giber in fiber‐reinforced polymers is important. The generation of new chemical bonding (Al–O–C) between aluminum and upper PC is the main reason why the joining strength is enhanced greatly. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43068.  相似文献   

17.
Nanocomposites based on an organically modified bentonite, from Maghnia Algeria (OBT) and a copolymer of methyl methacrylate with 4‐vinylpyridine (PMM4VP) synthesized in dioxan at room temperature using a neutral Ni(II)α‐benzoinoxime complex as a single component initiator, were elaborated via solution intercalation method and characterized by several techniques. X‐ray diffraction and transmission electron microscopy investigations indicate that mainly exfoliated and intercalated PMM4VP/OBT nanocomposites were elaborated and that the degree of exfoliation decreases with an increase of the OBT loading. Thermal analyses of these nanocomposites compared with their virgin copolymer confirmed a significant improvement of their thermal stability as evidenced by an increase of 28°C in their onset degradation temperatures. In addition, differential scanning calorimetry displayed an increase in the range of 12–18°C in their glass transition temperatures relative to their virgin copolymer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
1‐Azido‐2‐nitro‐2‐azapropane ( 1 ) was synthesized in high yield from 1‐chloro‐2‐nitro‐2‐azapropane and sodium azide. 1‐Nitrotetrazolato‐2‐nitro‐2‐azapropane ( 2 ) was synthesized in high yield from 1‐chloro‐2‐nitro‐2‐azapropane and silver nitrotetrazolate. The highly energetic new compounds ( 1 and 2 ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 14N), elemental analysis and low‐temperature single crystal X‐ray diffraction. 1‐Azido‐2‐nitro‐2‐azapropane ( 1 ) represents a covalently bound liquid energetic material which contains both a nitramine unit and an azide group in the molecule. 1‐Nitrotetrazolato‐2‐nitro‐2‐azapropane ( 2 ) is a covalently bound room‐temperature stable solid which contains a nitramine group and a nitrotetrazolate ring unit in the molecule. Compounds 1 and 2 are hydrolytically stable at ambient conditions. The impact sensitivity of compound 1 is very high (<1 J) whereas compound 2 is less sensitive (<6 J).  相似文献   

19.
The effect of the foaming process on the intercalation of nanoclays in low‐density polyethylene–nanoclay nanocomposites was studied with in situ energy‐dispersive X‐ray diffraction (ED‐XRD) with synchrotron radiation as an X‐ray source. The solid nanocomposites containing different amounts of an organomodified montmorillonite were melt‐blended with blowing agents of different nature and later foamed by heating at atmospheric pressure. During the foaming process, ED‐XRD experiments were performed. These experiments allowed us to measure the time evolution of the interlamellar distance of the clay platelets during the melting and foaming of the nanocomposites; we obtained information about the evolution of the clay structure during the process. The experimental results show that the foaming process induced the intercalation of the clays independently of the blowing agent used. We also proved that the degree of intercalation depended on the expansion ratio reached and that the intercalation produced was larger when the blowing agent was azodicarbonamide. For this particular blowing agent, some interesting effects appeared; these included a catalytic effect of the clays on the decomposition temperature, a partial intercalation of the clays during melt blending, and a very stable structure of the clay particles after foaming. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43432.  相似文献   

20.
Summary: The success of the use of layered silicates in polymer nanocomposites, to improve physical and chemical properties is strictly related to a deeper knowledge of the mechanistic aspects on which the final features are grounded. This work shows the temperature induced structural rearrangements of nanocomposites based on poly[ethylene‐co‐(vinyl acetate)] (EVA) intercalated‐organomodified clay (at 3–30 wt.‐% silicate addition) which occur in the range between 75 and 350 °C. In situ high temperature X‐ray diffraction (HT‐XRD) studies have been performed under both nitrogen and air to monitor the modifications of the nanocomposite structure at increasing temperatures under inert/oxidative atmosphere. Heating between 75 and 225 °C, under nitrogen or air, causes the layered silicate to migrate towards the nanocomposite surface and to increase its interlayer distance. The degradation of both the clay organomodifier and the VA units of the EVA polymer seems to play a key role in driving the evolution of the silicate phase in the low temperature range. The structural modifications of the nanocomposites in the high temperature range (250–350 °C), depended on the atmosphere, either inert or oxidizing, in which the samples were heated. Heating under nitrogen led to deintercalation and thus a decrease of the silicate interlayer space, whereas exfoliation was the main process under air leading to an increase of the silicate interlayer space.

Heat induced structural modification of EVA‐clay nanocomposite under nitrogen and air.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号