首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin‐film Si solar cells employ a back reflector (BR) for a more efficient use of the long wavelength light. Here, we have carried out a cross evaluation of metal (Ag‐based) and dielectric (white paint‐based) BR designs. Conclusive results have been reached regarding the most suitable BR type depending on the front electrode morphology, both with crater‐like and pyramidal texture. The ZnO/Ag BR is found to be optically more efficient because of improved light trapping, although the gain tends to vanish for rougher front electrodes. Thanks to non‐conventional Raman intensity measurements, this dependence on the front texture has been linked to the different weight of front and back interfaces in the light trapping process for the different morphologies. With rougher substrates, because the minor optical gain is accompanied by sputter‐induced electronic deterioration of the solar cell during the ZnO buffer layer deposition, the white paint‐based BR design is preferred. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, fabrication of a non‐continuous silicon dioxide layer from a silica nanosphere solution followed by the deposition of an aluminium film is shown to be a low‐cost, low‐thermal‐budget method of forming a high‐quality back surface reflector (BSR) on crystalline silicon (c‐Si) thin‐film solar cells. The silica nanosphere layer has randomly spaced openings which can be used for metal‐silicon contact areas. Using glass/SiN/p+nn+ c‐Si thin‐film solar cells on glass as test vehicle, the internal quantum efficiency (IQE) at long wavelengths (>900 nm) is experimentally demonstrated to more than double by the implementation of this BSR, compared to the baseline case of a full‐area Al film as BSR. The improved optical performance of the silica nanosphere/aluminium BSR is due to reduced parasitic absorption in the Al film. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We theoretically investigate light trapping with disordered 1D photonic structures in thin‐film crystalline silicon solar cells. The disorder is modelled in a finite‐size supercell, which allows the use of rigorous coupled‐wave analysis to calculate the optical properties of the devices and the short‐circuit current density Jsc. The role of the Fourier transform of the photonic pattern in the light trapping is investigated, and the optimal correlation between size and position disorder is found. This result is used to optimize the disorder in a more effective way, using a single parameter. We find that a Gaussian disorder always enhances the device performance with respect to the best ordered configuration. To properly quantify this improvement, we calculate the Lambertian limit to the absorption enhancement for 1D photonic structures in crystalline silicon, following the previous work for the 2D case [M.A. Green, Progr. Photovolt: Res. Appl. 2002; 10 (4), pp. 235–241]. We find that disorder optimization can give a relevant contribution to approach this limit. Finally, we propose an optimal disordered 2D configuration and estimate the maximum short‐circuit current that can be achieved, potentially leading to efficiencies that are comparable with the values of other thin‐film solar cell technologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Four different categories of rough reflecting substrates as well as a single periodic grating are incorporated and tested within n‐i‐p type amorphous silicon (a‐Si:H) solar cells. Each category is characterised by its own texture shape; dimensions were varied within the categories. Compared to flat reflecting substrates, gains in short‐circuit current density (Jsc) up to 20% have been obtained on rough reflecting plastic substrates. As long as (1) the characteristic dimensions of the textures are lower than the involved light wavelengths, (2) the textures do not present any defects i.e. as long as they do not have large craters or bumps spread over the surface, the root mean square roughness (δRMS) as well as the ratio of average feature height to average period can be used to evaluate the gain in Jsc; if each category of randomly textured substrates is considered separately, the haze factor can be used to estimate δRMS and thereby the gains in Jsc. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A systematic investigation of the nanoparticle‐enhanced light trapping in thin‐film silicon solar cells is reported. The nanoparticles are fabricated by annealing a thin Ag film on the cell surface. An optimisation roadmap for the plasmon‐enhanced light‐trapping scheme for self‐assembled Ag metal nanoparticles is presented, including a comparison of rear‐located and front‐located nanoparticles, an optimisation of the precursor Ag film thickness, an investigation on different conditions of the nanoparticle dielectric environment and a combination of nanoparticles with other supplementary back‐surface reflectors. Significant photocurrent enhancements have been achieved because of high scattering and coupling efficiency of the Ag nanoparticles into the silicon device. For the optimum light‐trapping scheme, a short‐circuit current enhancement of 27% due to Ag nanoparticles is achieved, increasing to 44% for a “nanoparticle/magnesium fluoride/diffuse paint” back‐surface reflector structure. This is 6% higher compared with our previously reported plasmonic short‐circuit current enhancement of 38%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Texturing of interfaces in thin film silicon solar cells is essential to enhance the produced photocurrent and thus the efficiencies. A UV nano‐imprint‐lithography (UV‐NIL) replication process was developed to prepare substrates with textures that are suitable for the growth of n‐i‐p thin film silicon solar cells. Morphological and optical analyses were performed to assess the quality of the replicas. A comparison of single junction amorphous solar cells on the original structures and on their replicas on glass revealed good light trapping and excellent electrical properties on the replicated structures. A tandem amorphous silicon/amorphous silicon (a‐Si/a‐Si) cell deposited on a replica on plastic exhibits a stabilized efficiency of 8.1% and a high yield of 90% of good cells in laboratory conditions. It demonstrates the possibility to obtain appropriate structure on low cost plastic substrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
We have developed a new light‐trapping scheme for a thin‐film Si stacked module (Si HYBRID PULS module), where a (a‐Si:H/transparent interlayer/microcrystalline Si) thin‐film was integrated into a large‐area solar cell module. An initial aperture efficiency of 13·1% has been achieved for a 910 × 455 mm Si HYBRID PLUS module, which was independently confirmed by AIST. This is the first report of the independently confirmed efficiency of a large‐area thin‐film Si module with an interlayer. The 19% increase of short‐circuit current of this module was obtained by the introduction of a transparent interlayer that caused internal light‐trapping. A mini‐module was shown to exhibit a stabilized efficiency of 12%. Outdoor performance of a Si HYBRID (a‐Si:H / micro‐crystalline Si stacked) solar cell module has been investigated for over 4 years with two different kinds of module (top and bottom cell limited, respectively). The HYBRID modules limited by the top cell have exhibited a more efficient performance than the modules limited by the bottom cell, in natural sunlight at noon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
As an alternative to randomly textured transparent conductive oxides as front contact for thin‐film silicon solar cells the application of transparent grating couplers was studied. The grating couplers were prepared by sputtering of aluminium‐doped zinc oxide (ZnO) on glass substrate, a photolithography and a lift‐off process and were used as periodically textured substrates. The period size and groove depth of these transparent gratings were tuned independently from each other and varied between 1 and 4 μm and 100–600 nm. The optical properties of rectangular‐shaped gratings and the opto‐electronic behaviour of amorphous and microcrystalline silicon solar cells with integrated grating couplers as a function of the grating parameters (period size P and groove depth hg) are presented. The optical properties of the gratings are discussed with respect to randomly textured substrates and the achieved solar cell results are compared with the opto‐electronic properties of solar cells deposited on untextured (flat) and randomly textured substrates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
An effective rigorous 3‐D optical modeling of thin‐film silicon solar cells based on finite element method (FEM) is presented. The simulation of a flat single junction thin‐film silicon solar cell on thick glass (i.e., superstrate configuration) is used to validate a commercial FEM‐based package, the High Frequency Structure Simulator (HFSS). The results are compared with those of the reference software, Advanced Semiconductor Analysis (ASA) program, proving that the HFSS is capable of correctly handling glass as an incident material within very timely, short, and numerically stable calculations. By using the HFSS, we simulated single junction thin‐film silicon solar cells on glass substrates textured with one‐dimensional (1‐D) and two‐dimensional (2‐D) trapezoid‐shaped diffraction gratings. The correctness of the computed results, with respect to an actual device, is discussed, and the impact of different polarizations on spectral response and optical losses is examined. From the simulations carried out, optimal combinations for period and height in both 1‐D and 2‐D grating configurations can be indicated, leading to short‐circuit current percentage increase with respect to a flat cell of, respectively, 25.46% and 32.53%. With very limited computer memory usage and computational time in the order of tens of minutes for a single simulation, we promote the usage of 3‐D FEM as a rigorous and efficient way to simulate thin‐film silicon solar cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Dielectric films with anti‐reflective sub‐wavelength structures are applied to thin‐film silicon solar cells to improve the light incoupling at the front surface. It is verified that modification of the refractive index of the incident medium using dielectric films with sub‐wavelength structures is beneficial to reduce the average reflectivity of Si solar cells with an anti‐reflective coating based on optical interference. It is also shown that the sub‐wavelength structure must be combined with a proper light‐trapping texture to enhance the absorption within thin‐film silicon solar cells. The effectiveness of dielectric films with sub‐wavelength structures is demonstrated by an increase of the short‐circuit current density of a microcrystalline silicon cell from 29.1 to 30.4 mA/cm2 in a designated area of 1 cm2. The optical interplay between the dielectric films and the light‐trapping textures is also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Wafer‐Equivalents are thin‐film solar cells that use a low‐cost silicon substrate to epitaxially grow a high‐quality crystalline silicon active layer. The epitaxy wrap‐through (EpiWT) cell is a back‐contact version of the Wafer‐Equivalent that aims to increase currents and gain other benefits of back contacts. The EpiWT cell can be made in a symmetrically interdigitated configuration with 50% back emitter coverage, or using an isolation layer to lower the back emitter coverage to ∼10%, which will theoretically increase voltages. The epitaxial deposition through via holes in the substrate depends on many factors, including the sealing of the deposition chamber, and produces various thicknesses and geometrical forms of the layers in the holes. An extended process has been developed to incorporate a passivated selective emitter and the first batch has been fabricated. The best result was an efficiency of 13.2% with ∼22 µm base layer thickness. The results are limited most by the fill factors at this stage, e.g. 75% for this cell, which is due to a processing difficulty encountered with screen‐printing in via holes. A new isolation layer was tested and successfully implemented for the low back‐emitter configuration. Comparable voltages and currents were achieved but the fill factors were lower than for the 50% back emitter cells, resulting in a best efficiency of 11.2%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Light trapping and photon management in honeycomb‐textured microcrystalline silicon solar cells are investigated experimentally and by modeling of the manufacturing process and the optical wave propagation. The solar cells on honeycomb‐textured substrates exhibit short circuit current densities exceeding 30 mA/cm2 and energy conversion efficiencies of up to 11.0%. By controlling the fabrication process, the period and height of the honeycomb‐textured substrates are varied. The influence of the honeycomb substrate morphology on the interfaces of the individual solar cell layers and the quantum efficiency is determined. The optical wave propagation is calculated using 3D finite difference time domain simulations. A very good agreement between the optical simulation and experimental results is obtained. Strategies are discussed on how to increase the short circuit current density beyond 30 mA/cm2. In particular, the influence of plasmonic losses of the textured silver (Ag) reflector on the short circuit current and quantum efficiency of the solar cell is discussed. Finally, solar cell structures with reduced plasmonic losses are proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
To further increase the efficiency of multijunction thin‐film silicon (TF‐Si) solar cells, it is crucial for the front electrode to have a good transparency and conduction, to provide efficient light trapping for each subcell, and to ensure a suitable morphology for the growth of high‐quality silicon layers. Here, we present the implementation of highly transparent modulated surface textured (MST) front electrodes as light‐trapping structures in multijunction TF‐Si solar cells. The MST substrates comprise a micro‐textured glass, a thin layer of hydrogenated indium oxide (IOH), and a sub‐micron nano‐textured ZnO layer grown by low‐pressure chemical vapor deposition (LPCVD ZnO). The bilayer IOH/LPCVD ZnO stack guarantees efficient light in‐coupling and light trapping for the top amorphous silicon (a‐Si:H) solar cell while minimizing the parasitic absorption losses. The crater‐shaped micro‐textured glass provides both efficient light trapping in the red and infrared wavelength range and a suitable morphology for the growth of high‐quality nanocrystalline silicon (nc‐Si:H) layers. Thanks to the efficient light trapping for the individual subcells and suitable morphology for the growth of high‐quality silicon layers, multijunction solar cells deposited on MST substrates have a higher efficiency than those on single‐textured state‐of‐the‐art LPCVD ZnO substrates. Efficiencies of 14.8% (initial) and 12.5% (stable) have been achieved for a‐Si:H/nc‐Si:H tandem solar cells with the MST front electrode, surpassing efficiencies obtained on state‐of‐the‐art LPCVD ZnO, thereby highlighting the high potential of MST front electrodes for high‐efficiency multijunction solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of grating couplers on the optical properties of silicon thin‐film solar cells was studied by a comparison of experimental results with numerical simulations. The thin‐film solar cells studied are based on microcrystalline silicon (μc‐Si:H) absorber layers of thickness in the micrometer range. To investigate the light propagation in these cells, especially in the red wavelength region, three‐dimensional power loss profiles are simulated. The influence of different grating parametres—such as period size, groove height, and shape of the grating—was studied to gain more insight into the light propagation within thin‐film silicon solar cells and to determine an optimized light trapping scheme. The effect of the TCO front and TCO back side layer thickness was investigated. The calculated quantum efficiencies and short‐circuit current densities are in good agreement with the experimental data. The simulations predict further optimization criteria. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we present a technology for a high precision nanostructure replication process based on ultraviolet nanoimprint lithography for the application in the field of thin‐film photovoltaics. The potential of the technology is demonstrated by the fabrication of microcrystalline silicon thin‐film prototype solar cells. The high accuracy replication of random microstructures made from sputtered and etched ZnO:Al, used to scatter the incident light in thin solar cells, is shown by local topography investigations of the same 7.5 × 7.5 µm2 area on the master and the replica. Different types of imprint resists and imprint moulds were investigated to find the optimal, high precision replication technology. Two types of thin‐film silicon solar cells, in p‐i‐n and n‐i‐p configuration, were fabricated to study the potential of the imprint technology for different applications. It is shown that solar cells deposited on an imprinted glass hold similar performances compared with reference solar cells fabricated with a standard process on textured ZnO:Al. Thus, it is demonstrated that the replication of light scattering structures by using an imprint process is an attractive method to decouple the scattering properties from the layer forming the electrical front contact. Because a simple and cheap high throughput process is used, this study additionally proves the relevance for the industrial mass production in the field of photovoltaics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 1019 to 7.07 × 1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at RH = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (Voc = 0.53 V, Jsc = 23.98 mA/cm2 and FF = 0.65) was obtained compared to 6.36% (Voc = 0.44 V, Jsc = 21.90 mA/cm2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
We compare the performance of two back reflector designs on the optoelectrical properties of microcrystalline silicon solar cells. The first one consists of a 5‐µm‐thick low‐pressure chemical vapor deposition (LPCVD)‐ZnO electrode combined with a white sheet; the second one incorporates an Ag reflector deposited on a thin LPCVD‐ZnO layer (with thickness below 200 nm). For this latter design, the optical loss in the nano‐rough Ag reflector can be strongly reduced by smoothing the surface of the thin underlying ZnO layer, by means of an Ar‐plasma treatment. Because of its superior lateral conductivity, the thin‐ZnO/Ag back reflector design provides a higher fill factor than the dielectric back reflector design. When decreasing the roughness of the front electrode with respect to our standard front LPCVD‐ZnO layer, the electrical cell performance is improved; in addition, the implementation of the thin‐ZnO/Ag back reflector leads to a significant relative gain in light trapping. Applying this newly optimized combination of front and back electrodes, the conversion efficiency is improved from 8.9% up to 9.4%, for cells with an active‐layer thickness of only 1.1 µm. We thereby highlight the necessity to optimize simultaneously the front and back electrodes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Optical and electrical simulations were carried out for thin film silicon solar tandem cells with intermediate reflector layer (IRL) between top and bottom cell and compared with experimental external quantum efficiency and current voltage characteristics results. Reference data were collected from a series of tandem cells with different thicknesses of the top cell absorber layer (160–240 nm), the bottom cell absorber layer (1750–2100 nm), and the transparent conductive oxides based IRL (10–80 nm). It turned out that for capturing correctly the influence of the IRL on the light management as a function of the IRL thickness, the conventional semicoherent approach is not sufficient. Whereas the optical properties of a very thin IRL are governed by interference effects that are best calculated using a fully coherent model, increasingly thicker IRL show a more and more incoherent behavior. By taking into account, the interface morphology and angular light distribution within the cell stack an algorithm for the effective IRL reflectivity was proposed that explains the experimental findings very well. The consecutive electrical simulations were carried out with the device simulator ASA. The dependence of short circuit current density jsc and fill factor FF on the thickness dIRL of the IRL is in qualitative agreement between simulation and experiment showing coincident extrema in jsc(dIRL) and FF(dIRL) at the current matching point. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Solar PV is widely considered as a “green” technology. This paper, however, investigates the environmental impact of the production of solar modules made from thin‐film silicon. We focus on novel applications of nano‐crystalline Silicon materials (nc‐Si) into current amorphous Silicon (a‐Si) devices. Two nc‐Si specific details concerning the environmental performance can be identified, when we want to compare to a‐Si modules. First, in how far the extra (and thicker) silicon layer (s) affects upstream material requirements and energy use. Second, in how far depositing an extra silicon layer may increase emissions of greenhouse gases as additional emissions of Fluor gases (F‐gases) are associated to this step. The much larger global warming potential of F‐gases (17 200–22 800 times that of CO2) may lead to higher environmental burdens. To date, no study has yet analyzed the effect of F‐gas usage on the environmental profile of thin‐film silicon solar modules. We performed a life‐cycle assessment (LCA) to investigate the current environmental usefulness of pursuing this novel micromorph concept. The switch to the new micromorph technology will result in a 60–85% increase in greenhouse gas emissions (per generated kWh solar electricity) in case of NF3 based clean processing, and 15–100% when SF6 is used. We conclude that F‐gas usage has a substantial environmental impact on both module types, in particular the micromorph one. Also, micromorph module efficiencies need to be improved from the current 8–9% (stabilized efficiency) toward 12–16% (stab. eff.) in order to compensate for the increased environmental impacts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号