首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiation response of In0.5Ga0.5P, GaAs, In0.2Ga0.8As, and In0.3Ga0.7As single‐junction solar cells, whose materials are also used as component subcells of inverted metamorphic triple‐junction (IMM3J) solar cells, was investigated. All four types of cells were prepared using a simple device layout and irradiated with high‐energy electrons and protons. The essential solar cell characteristics, namely, light‐illuminated current–voltage (LIV), dark current–voltage (DIV), external quantum efficiency (EQE), and two‐dimensional photoluminescence (2D‐PL) imaging were obtained before and after irradiation, and the corresponding changes due to the irradiations were compared and analyzed. The degradation of the cell output parameters by electrons and protons were plotted as a function of the displacement damage dose. It was found that the radiation resistance of the two InGaAs cells is approximately equivalent to that of the InGaP and GaAs cells from the materials standpoint, which is a result of different initial material qualities. However, the InGaAs cells show relatively low radiation resistance to electrons especially for the short‐circuit current (I sc). By comparing the degradation of I sc and EQE, data, It was confirmed that the greater decrease of minority‐carrier diffusion length in InGaAs compared with InGaP and GaAs causes severe degradation in the photo‐generation current of the InGaAs bottom subcells in IMM3J structures. Additionally, it was found that the InGaP and two InGaAs cells exhibited equivalent radiation resistance of V oc, but radiation response mechanisms of V oc are thought to be different. Further analytical studies are necessary to interpret the observed radiation response of the cells. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

2.
讨论了影响非晶硅太阳电池稳定性的因素,介绍了改善非晶硅材料稳定性的方法,进行了非晶硅太阳电池光致衰减测试.描述了电流注入退火和热退火对非晶硅太阳电池性能的改善.  相似文献   

3.
通过比较单晶硅与非晶硅比功率发电量,分析两者在太阳能发电功效上的具体差异.  相似文献   

4.
We have developed a crystalline silicon solar cell with amorphous silicon (a‐Si:H) rear‐surface passivation based on a simple process. The a‐Si:H layer is deposited at 225°C by plasma‐enhanced chemical vapor deposition. An aluminum grid is evaporated onto the a‐Si:H‐passivated rear. The base contacts are formed by COSIMA (contact formation to a‐Si:H passivated wafers by means of annealing) when subsequently depositing the front silicon nitride layer at 325°C. The a‐Si:H underneath the aluminum fingers dissolves completely within the aluminum and an ohmic contact to the base is formed. This contacting scheme results in a very low contact resistance of 3.5 ±0.2 mΩ cm2 on low‐resistivity (0.5 Ω cm) p‐type silicon, which is below that obtained for conventional Al/Si contacts. We achieve an independently confirmed energy conversion efficiency of 20.1% under one‐sun standard testing conditions for a 4 cm2 large cell. Measurements of the internal quantum efficiency show an improved rear surface passivation compared with reference cells with a silicon nitride rear passivation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents an environmental life cycle assessment of a roof‐integrated flexible solar cell laminate with tandem solar cells composed of amorphous silicon/nanocrystalline silicon (a‐Si/nc‐Si). The a‐Si/nc‐Si cells are considered to have 10% conversion efficiency. Their expected service life is 20 years. The production scale considered is 100 MWp per year. A comparison of the a‐Si/nc‐Si photovoltaic (PV) system with the roof‐mounted multicrystalline silicon (multi‐Si) PV system is also presented. For both PV systems, application in the Netherlands with an annual insolation of 1000 kWh/m2 is considered. We found that the overall damage scores of the a‐Si/nc‐Si PV system and the multi‐Si PV system are 0.012 and 0.010 Ecopoints/kWh, respectively. For both PV systems, the impacts due to climate change, human toxicity, particulate matter formation, and fossil resources depletion together contribute to 96% of the overall damage scores. Each of both PV systems has a cumulative primary energy demand of 1.4 MJ/kWh. The cumulative primary energy demand of the a‐Si/nc‐Si PV system has an uncertainty of up to 41%. For the a‐Si/nc‐Si PV system, an energy payback time of 2.3 years is derived. The construction for roof integration, the silicon deposition, and etching are found to be the largest contributors to the primary energy demand of the a‐Si/nc‐Si PV system, whereas encapsulation and the construction for roof integration are the largest contributors to its impact on climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
PI衬底柔性透明硅薄膜太阳能电池的制备及性能   总被引:1,自引:1,他引:0  
利用硬质玻璃为载板,采用传统硅薄膜太阳能电池生产设备,在聚酰亚胺(PI)塑料薄膜衬底上沉积了B掺杂的ZnO(BZO)薄膜,并以此作为前电极制备了单节电池结构及多节串联一体结构的非晶硅(a-Si)太阳能电池;研究了PI衬底上BZO薄膜的光学及电学性能。结果表明,PI衬底上沉积BZO薄膜后在300~1 200 nm波长范围的透光率为76.63%,方块电阻19.7?/□。所制备的单节和多节串联一体结构的a-Si薄膜太阳能电池的转化效率分别达到6.45%和5.1%,封装后电池组件具有一定的透光性,透光率约达到30.2%。  相似文献   

7.
A stack of hydrogenated amorphous silicon (a‐Si) and PECVD‐silicon oxide (SiOx) has been used as surface passivation layer for silicon wafer surfaces. Very good surface passivation could be reached leading to a surface recombination velocity (SRV) below 10 cm/s on 1 Ω cm p‐type Si wafers. By using the passivation layer system at a solar cell's rear side and applying the laser‐fired contacts (LFC) process, pointwise local rear contacts have been formed and an energy conversion efficiency of 21·7% has been obtained on p‐type FZ substrates (0·5 Ω cm). Simulations show that the effective rear SRV is in the range of 180 cm/s for the combination of metallised and passivated areas, 120 ± 30 cm/s were calculated for the passivated areas. Rear reflectivity is comparable to thermally grown silicon dioxide (SiO2). a‐Si rear passivation appears more stable under different bias light intensities compared to thermally grown SiO2. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrogenated amorphous silicon (a‐Si:H) is conventionally deposited using static plasma‐enhanced chemical vapor deposition (PECVD) processes. In this work, a very high frequency (VHF) dynamic deposition technique is presented, on the basis of linear plasma sources. This configuration deploys a simple reactor design and enables continuous deposition processes, leading to a high throughput. Hence, this technique may facilitate the use of flexible substrates. As a result, the production costs of thin‐film silicon solar cells could be reduced significantly. We found a suitable regime for the homogeneous deposition of a‐Si:H layers for growth rates from 0.35–1.1 nm/s. The single layer properties as well as the performance of corresponding a‐Si:H solar cells are investigated and compared with a state‐of‐the‐art radio frequency (RF) PECVD regime. By analyzing the Fourier transform infrared spectroscopy spectra of single layers, we found an increasing hydrogen concentration with deposition rate for both techniques, which is in agreement with earlier findings. At a given growth rate, the hydrogen concentration was at the same level for intrinsic layers deposited by RF‐PECVD and VHF‐PECVD. The initial efficiency of the corresponding p–i–n solar cells ranged from 9.6% at a deposition rate of 0.2 nm/s (RF regime) to 8.9% at 1.1 nm/s (VHF regime). After degradation, the solar cell efficiency stabilized between 7.8% and 5.9%, respectively. The solar cells incorporating intrinsic layers grown dynamically using the linear plasma sources and very high frequencies showed a higher stabilized efficiency and lower degradation loss than solar cells with intrinsic layers grown statically by RF‐PECVD at the same deposition rate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, we report an appreciably increased efficiency from 6% up to 9.1% of hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cells by using a combination of different p-doped window layers, such as boron doped hydrogenated amorphous silicon (p-a-Si:H), amorphous silicon oxide (p-a-SiOx:H), microcrystalline silicon (p-µc-Si:H), and microcrystalline silicon oxide (p-µc-SiOx:H). Optoelectronic properties and the role of these p-layers in the enhancement of a-SiGe:H cell efficiency were also examined and discussed. An improvement of 1.62 mA/cm2 in the short-circuit current density (Jsc) is attributed to the higher band gap of p-type silicon oxide layers. In addition, an increase in open-circuit voltage (Voc) by 150 mV and fill factor (FF) by 6.93% is ascribed to significantly improved front TCO/p-layer interface contact.  相似文献   

10.
Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 1019 to 7.07 × 1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at RH = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (Voc = 0.53 V, Jsc = 23.98 mA/cm2 and FF = 0.65) was obtained compared to 6.36% (Voc = 0.44 V, Jsc = 21.90 mA/cm2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
概述了硅太阳电池和硅单晶在空间高能粒子辐射下性能的变化及采用掺锡、掺锂提高太阳电池用硅单晶抗辐射性能的原理和方法。  相似文献   

12.
Light trapping is one of the key issues to improve the light absorption and increase the efficiency of thin film solar cells. The effects of the triangular Ag nanograting on the absorption of amorphous silicon solar cells were investigated by a numerical simulation based on the finite element method. The light absorption under different angle and area of the grating has been calculated. Furthermore, the light absorption with different incident angle has been calculated. The optimization results show that the absorption of the solar cell with triangular Ag nanograting structure and anti-reflection film is enhanced up to 96% under AM1.5 illumination in the 300–800 nm wavelength range compared with the reference cell. The physical mechanisms of absorption enhancement in different wavelength range have been discussed. Furthermore, the solar cell with the Ag nanograting is much less sensitive to the angle of incident light. These results are promising for the design of amorphous silicon thin film solar cells with enhanced performance.  相似文献   

13.
Using plasma enhanced chemical vapor deposition(PECVD) at 13.56 MHz,a seed layer is fabricated at the initial growth stage of the hydrogenated microcrystalline silicon germanium(μc-Si1-xGex:H) i-layer.The effects of seeding processes on the growth ofμc-Si1-xGex:H i-layers and the performance ofμc-Si1-xGex:H p-i-n single junction solar cells are investigated.By applying this seeding method,theμc-Si1-xGex:H solar cell shows a significant improvement in short circuit current density(Jsc) and fill factor(FF) with an acceptable performance of blue response as aμc-Si:H solar cell even when the Ge content x increases up to 0.3.Finally,an improved efficiency of 7.05%is achieved for theμc-Si0.7Ge0.3:H solar cell.  相似文献   

14.
Characteristic degradation curves for proton and electron induced degradation of triple junction (3J) and isotype Ga0.5In0.5P/GaAs/Ge solar cells were obtained. The displacement damage dose methodology in combination with a varying effective threshold energy for atomic displacement T d ,e f f was used to analyze 3G28 and 3G30 3J cell data. The nonionizing energy loss (NIEL) was calculated analytically, and T d ,e f f was explicitly introduced as a fit parameter. Using the GaAs NIEL in fitting the 3J degradation data, a T d ,e f f of 21 eV was determined, whereas a T d ,e f f of 36 eV was found using the Ga0.5In0.5P NIEL. In GaAs and Ga0.5In0.5P single junction cells, the effective threshold energies for atomic displacement of 22 and 34 eV were determined. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Bifacial solar cells and modules are a promising approach to increase the energy output of photovoltaic systems, and therefore decrease levelized cost of electricity (LCOE). This work discusses the bifacial silicon solar cell concepts PERT (passivated emitter, rear totally diffused) and BOSCO (both sides collecting and contacted) in terms of expected module cost and LCOE based on in‐depth numerical device simulation and advanced cost modelling. As references, Al‐BSF (aluminium back‐surface field) and PERC (passivated emitter and rear) cells with local rear‐side contacts are considered. In order to exploit their bifacial potential, PERT structures (representing cells with single‐sided emitter) are shown to require bulk diffusion lengths of more than three times the cell thickness. For the BOSCO concept (representing cells with double‐sided emitter), diffusion lengths of half the cell thickness are sufficient to leverage its bifacial potential. In terms of nominal LCOE, BOSCO cells are shown to be cost‐competitive under monofacial operation compared with an 18% efficient (≙ pMPP = 18 mW/cm2) multicrystalline silicon (mc‐Si) Al‐BSF cell and a 19% mc‐Si PERC cell for maximum output power densities of pMPP ≥ 17.3 mW/cm2 and pMPP ≥ 18.1 mW/cm2, respectively. These values assume the use of $10/kg silicon feedstock for the BOSCO and $20/kg for the Al‐BSF and PERC cells. For the PERT cell, corresponding values are pMPP ≥ 21.7 mW/cm2 and pMPP ≥ 22.7 mW/cm2, respectively, assuming the current price offset (≈50%, at the time of October 2014) of n‐type Czochralski‐grown silicon (Cz‐Si) compared with mc‐Si wafers. The material price offset of n‐type to p‐type Cz‐Si wafers (≈15%, October 2014) currently accounts for approximately 1 mW/cm2, which correlates to a conversion efficiency difference of 1%abs for monofacial illumination with 1 sun. From p‐type mc‐Si to p‐type Cz‐Si (≈30% wafer price offset, October 2014), this offset is approximately 2.5 mW/cm2 for a PERT cell. When utilizing bifacial operation, these required maximum output power densities can be transformed into required minimum rear‐side illumination intensities for arbitrary front‐side efficiencies ηfront by means of the performed numerical simulations. For a BOSCO cell with ηfront = 18%, minimum rear‐side illumination intensities of ≤ 0.02 suns are required to match a 19% PERC cell in terms of nominal LCOE. For an n‐type Cz‐Si PERT cell with ηfront = 21%, corresponding values are ≤ 0.11 suns with 0.05 suns being the n‐type to p‐type material price offset. This work strongly motivates the use of bifacial concepts to generate lowest LCOE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Screen‐printed metal contact formation through a carbon containing antireflection coating was investigated for silicon solar cells by fabricating conventional carbon‐free SiNx and carbon‐rich SiCxNy film. An appreciable difference was found in the average shunt resistance (Rsh), which was about an order of magnitude higher for SiCxNy‐coated solar cells relative to the counterpart SiNx‐coated solar cells. Series resistance (Rs) and fill factor (FF) were comparable for both antireflection coatings but the starting efficiency of SiCxNy‐coated cell was ~0·2% lower because of slightly inferior surface passivation. However, SiCxNy‐coated solar cells showed less degradation under lower illumination (<1000 W/m2) compared with the SiNx‐coated cells due to reduced FF degradation under low illumination. Theoretical calculations in this paper support that this is a direct result of high Rsh. Detailed photovoltaic system and cost modeling is performed to quantify the enhanced energy production and the reduced levelized cost of electricity due to higher shunt resistance of the SiCxNy‐coated cells. It is shown that Rsh value below 30 Ω (7000 Ω cm2 for 239 cm2 cell) can lead to appreciable loss in energy production in regions of low solar insolation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of hydrogen on aluminum-induced crystallization (AIC) of sputtered hydrogenated amorphous silicon (a-Si:H) were investigated by controlling the hydrogen content of a-SiH films. Nonhydrogenated (a-Si) and hydrogenated (a-Si:H) samples were deposited by sputtering and plasma-enhanced chemical vapor deposition (PECVD). All aluminum films were deposited by sputtering. Hydrogen was introduced into the sputter-deposited a-Si films during the deposition. After deposition, the samples were annealed at temperatures from 200°C to 400°C for different periods of time. X-ray diffraction (XRD) patterns were used to confirm the presence and degree of crystallization in the a-Si:H films. For nonhydrogenated films, crystallization initiates at a temperature of 350°C. The crystallization of sputter-deposited a-Si:H initiates at 225°C when 14% hydrogen is present in the film. As the hydrogen content is decreased, the crystallization temperature increases. On the other hand, the crystallization initiation temperature for PECVD a-Si:H containing 11at.%H is 200°C. Further study revealed that the crystallization initiation temperature is a function, not only of the total atomic percent hydrogen in the film, but also a function of the way in which the hydrogen is bonded in the film. Models are developed for crystallization initiation temperature dependence on hydrogen concentration in a-Si:H thin films.  相似文献   

18.
19.
Electron spin resonance (ESR) was used to study defects induced by 2MeV-proton irradiation in cubic silicon carbide (3C-SiC) epitaxially grown on Si substrates by chemical vapor deposition. A new ESR signal labeled T5 was observed at temperatures lower than ≈100 K in Al doped, p-type 3C-SiC epilayers irradiated. The T5 signal has anisotropic g-values of g1 = 2.0020 ± 0.0001, g2 = 2.0007 ± 0.0001,and g3 = 1.9951 ± 0.0001. The principal axes of the g-tensor were found to be along the 〈100〉 directions, indicating that the T5 center has D2 symmetry. Isochronal annealing of the irradiated epilayers showed that the T5 center was annealed at temperatures around 150° C. A tentative model is discussed for the T5 center.  相似文献   

20.
多晶Si太阳电池新型制绒工艺研究   总被引:2,自引:0,他引:2  
提出一种采用二次酸腐蚀的多晶Si制绒新方法,首先在HF/HNO3的富HNO3体系中对Si片进行一次腐蚀,之后在富HF体系中进行二次腐蚀,以优化表面织构,减少光在Si表面的反射损失。制绒后,用扫描电子显微镜(SEM)对Si片进行了表面形貌分析,用Carry 5000紫外-可见-近红外分光光度计测量反射谱线,得到未镀减反射膜(ARC)的二次腐蚀制绒的最低反射率为20.34%,比一次腐蚀制绒(22.70%)低2.36%。将二次腐蚀新工艺应用于太阳电池工业制备中,对电池输出参量进行检测分析。结果表明,经过二次腐蚀工艺处理的太阳电池开路电压(VOC)、短路电流(JSC)和效率η均比采用一次腐蚀工艺的太阳电池有不同程度的提高,制成的太阳电池最高效率为14.93%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号