首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Naturally available halloysite nanotubes (HNTs) with hollow nanotubular structures were used as reinforcement in poly(ε‐caprolactone) (PCL). The PCL/HNT nanocomposites were prepared by melt mixing the polymer with as‐received HNTs up to 10 wt % in an internal batch mixer. Transmission electron microscopy analysis indicated that the HNTs were dispersed uniformly on the nanoscale throughout the PCL matrix. Differential scanning calorimeter studies revealed that the PCL crystallinity was decreased in the nanocomposites, and the HNTs dispersed in the PCL matrix led to an increase in the non‐isothermal crystallization temperature of the PCL. Tensile and dynamic mechanical tests showed great enhancement in strength and stiffness at low HNT content, while still maintaining the ductility of the PCL. The glass transition temperature (Tg) of the pristine PCL was substantially increased with increase in filler loading, which indicates good reinforcing effect imparted by the addition of HNT. Melt rheological studies revealed that the nanocomposites exhibited strong shear thinning behavior, and a percolated network of HNT particles was formed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Poly(ε‐caprolactone) (PCL)/trisilanolphenyl polyhedral oligomeric silsesquioxane (TspPOSS) nanocomposites were prepared by solution mixing followed by film casting. Wide‐angle X‐ray diffraction and field‐emission scanning electron microscopy observations showed that the POSS molecules formed crystal domains and dispersed uniformly on the nanoscale in the PCL matrix. Fourier transform infrared analysis of the nanocomposites revealed that there are hydrogen‐bonded interactions between the silanol group of the TspPOSS and carbonyl oxygen of the PCL. Differential scanning calorimetry, tensile testing, and dynamic mechanical analysis (DMA) showed that, with increasing POSS content in the nanocomposites, the melting temperature and degree of crystallinity decreased while glass transition temperature, tensile modulus and strength increased without sacrificing the ductility of the PCL. DMA results also demonstrated the presence of a rubbery plateau above the melting temperature of the PCL/TspPOSS nanocomposites, and the moduli at the plateau region increased with increasing POSS content in the nanocomposites, implying that the PCL/TspPOSS nanocomposites formed a physically crosslinked structure. The physically crosslinked PCL/TspPOSS nanocomposites exhibited a thermally triggered shape memory effect. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Biodegradable poly(ε‐caprolactone) (PCL)/silica nanocomposites at various silica loadings were prepared via direct melt compounding method in this work. Scanning electron microscopy observation indicated that when the silica content was < 3 wt%, the nanoparticles dispersed evenly in the PCL matrix and exhibited only aggregates with particle size of less than 100 nm. The results of nonisothermal melt crystallization showed that the crystallization peak temperature was higher in the nanocomposites than in neat PCL; moreover, the overall crystallization rate was faster in the nanocomposites than in neat PCL during isothermal melt crystallization. Both nonisothermal and isothermal melt crystallization studies suggested that the crystallization of PCL was enhanced by the presence of silica and influenced by the silica loading. The effect of silica on the crystallization behavior was twofold: the presence of silica may provide heterogeneous nucleation sites for the PCL crystallization while the aggregates of silica may restrict crystal growth of PCL. However, the crystal structure of PCL remained almost unchanged despite the presence of silica in the nanocomposites. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

4.
Electrospun nanocomposites of poly(ε‐caprolactone) (PCL) incorporated with PCL‐grafted cellulose nanocrystals (PCL‐g‐CNC) were produced. PCL chains were grafted from cellulose nanocrystals (CNC) surface by ring‐opening polymerization. Grafting was confirmed by infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA). The resulting PCL‐g‐CNC were then incorporated into a PCL matrix at various loadings. Homogeneous nanofibers with average diameter decreasing with the addition of PCL‐g‐CNC were observed by scanning electron microscopy (SEM). PCL‐g‐CNC domains incorporated into the PCL matrix were visualized by transmission electron microscopy (TEM). Thermal and mechanical properties of the mats were analyzed by differential scanning calorimetry (DSC), TGA and dynamic mechanical analysis (DMA). The addition of PCL‐g‐CNC into the PCL matrix caused changes in the thermal behavior and crystallinity of the electrospun fibers. Significant improvements in Young's modulus and in strain at break with increasing PCL‐g‐CNC loadings were found. These results highlighted the great potential of cellulose nanocrystals as a reinforcement phase in electrospun PCL mats, which can be used as biomedical materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43445.  相似文献   

5.
In this study, cellophane (PT) multilayer films were prepared by coating with different thickness of poly(εcaprolactone) (PCL) and chitosan (CH), and its effects on barrier and mechanical properties were evaluated. It was shown that the PCL/PT/PCL and PCL/CH/PT/CH/PCL multilayer films exhibit much better water vapor barrier than PT, and these films still keep the high oxygen barrier. And the barrier properties of multilayer film were improved with the increase of the thickness of coating materials. The Young's modulus and tensile strength of PT multilayer film were slightly decreased, and their elongations at break were increased by coating. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1805–1811, 2013  相似文献   

6.
The poly(ε‐caprolactone) (PCL)/α‐cyclodextrin (α‐CD) inclusion complex (PCLIC) was successfully prepared, and its effect on the thermal behavior and mechanical properties of PCL was thoroughly studied. It is shown that the addition of PCLIC greatly increased the crystallization rate and thermal stability of the PCL. The Young's modulus and yield strength of PCL/PCLIC composite are about 2 and 1.3 times of the pure PCL, and the elongation at break of the PCL/PCLIC composites kept above 350%, when the PCLIC composition is 15 wt %. It is shown that PCLIC is a good enforcing biofiller for the PCL. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Blends of poly (ε‐caprolactone) (PCL)/polylactide (PLA) were prepared by solution‐casting method to study their thermal and rheological properties. Differential scanning calorimetry thermographs have shown two separate melting peaks in the blends, which are indicative of immiscible structure at all compositions. Scanning electron microscopy images show droplet morphology of PCL into PLA matrix up to 40 wt% of PCL. Above this concentration, the co‐continuous morphology starts to appear, which becomes again droplet morphology for blends with concentration of PCL higher than about 60 wt%. The viscoelastic properties of the various blends were investigated using rotational rheometry. The enhancement of the elastic modulus of blends at small frequencies at which terminal zone behavior is expected, is a signature behavior of immiscible systems due to the presence of interface and contribution to the stress from interfacial tension. Two emulsion models were used to predict the viscoelastic properties of the blends from the corresponding properties of their pure components that led to the determination of the interfacial tension of PCL/PLA in agreement with experimental findings. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
Poly(?‐caprolactone) (PCL)/layered double hydroxide (LDH) nanocomposites were prepared successfully via simple solution intercalation. The nonisothermal melt crystallization kinetics of neat PCL and its LDH nanocomposites was investigated with the Ozawa, Avrami, and combined Avrami–Ozawa methods. The Ozawa method failed to describe the crystallization kinetics of the studied systems. The Avrami method was found to be useful for describing the nonisothermal crystallization behavior, but the parameters in this method do not have explicit meaning for nonisothermal crystallization. The combined Avrami–Ozawa method explained the nonisothermal crystallization behavior of PCL and its LDH nanocomposites effectively. The kinetic results and polarized optical microscopy observations indicated that the addition of LDH could affect the mechanism of nucleation and growth of the PCL matrix. The Takhor model was used to analyze the activation energies of nonisothermal crystallization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Mechanical properties of poly(ε‐caprolactone) (PCL) and polylactic acid (PLA) blend reinforced with Dura and Tenera palm press fibers were studied. Dicumyl peroxide (DCP) was used as compatibilizer in the blend composites. Fourier transforms infrared spectrophotometer (FTIR) and field emission scanning electron microscope (FESEM) was used to study the effect of treatment on the fibers and fiber/matrix adhesion respectively. The uncompatibilized blend composites exhibited higher Young's modulus than the compatibilized blend composites. Impact strength of compatibilized blend composites of Tenera fibers (FM) increased by 161% at 10 wt% fiber load more than the uncompatibilized blend composites at same fiber load. The Dura fibers (FN) enhanced impact strength by 133% at 10 wt% fiber load. Tensile strength increased by 40% for compatibilized FM blend composites. In conclusion, it was observed that DCP incorporation resulted in good interfacial adhesion as revealed by the FESEM micrographs and evidenced in the improved mechanical properties. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
Viscoelastic properties in solid and in melt state of poly(ε‐caprolactone), PCL, nanocomposites with organomodified clays (Cloisite30B and Cloisite15A) are thoroughly investigated. Although WAXD is insensitive to the difference in the nanocomposites structure, the melt rheology reveals pronounced differences between the two series. Melt yield stress values, obtained from fittings by the Carreau–Yasuda model, are used as a measure of partial exfoliation of the clay. Temperature dependence of the shift factors, used for time–temperature superposition of the modulus curves, yields similar values of the flow activation energies for all the samples. Temperature dependences of the dynamic modulus and loss factor of solid nanocomposites were correlated to the structural differences deduced from the melt rheology. The increase in the storage modulus is compared to the theoretical predictions from the Halpin–Tsai model. The effective aspect ratio obtained from this comparison agrees reasonably with the value estimated from the melt rheology. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42896.  相似文献   

11.
Both wettability and crystallizability control poly(ε‐caprolactone)'s (PCL) further applications as biomaterial. The wettability is an important property that is governed by both chemical composition and surface structure. In this study, we prepared the PCL/poly(N‐vinylpyrrolidone) (PVP) blends via successive in situ polymerization steps aiming for improving the wettability and decreasing crystallizability of PCL. The isothermal crystallization of PCL/PVP at different PVP concentrations was carried out. The equilibrium melting point (T), crystallization rate, and the melting behavior after isothermal crystallization were investigated using differential scanning calorimetry (DSC). The Avrami equation was used to fit the isothermal crystallization. The DSC results showed that PVP had restraining effect on the crystallizability of PCL, and the crystallization rate of PCL decreased clearly with the increase of PVP content in the blends. The X‐ray diffraction analysis (WAXD) results agreed with that. Water absorptivity and contact angle tests showed that the hydrophilic properties were improved with the increasing content of PVP in blends. The coefficient for the water diffusion into PCL/PVP blends showed to be non‐Fickian in character. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Poly(lactic acid)/poly(ε‐caprolactone)/organically modified montmorillonite (PLA/PCL/OMMT) nanocomposites were melt‐processed in a twin‐screw extruder under high shear conditions. As a result of the processing conditions employed, the OMMT layers located in the less compatible PCL phase in all the ternary nanocomposites. The morphology of the PLA/PCL blend evolved from “sea‐island” to co‐continuous upon the addition of OMMT. Both the X‐ray diffraction (XRD) and viscoelastic characterization suggested similar OMMT dispersion in the reference PLA binary and in the PLA/PCL ternary nanocomposites, regardless of its location in the PLA and PCL phase, respectively. The reinforcing effect of the organoclay was also similar. The addition of OMMT to the PLA/PCL blend fully compensated the loss in stiffness and oxygen barrier performance produced by PCL in PLA; the nanocomposite with 3% OMMT showed the same modulus and permeability values as those of pure PLA. Moreover, the ductile behavior (elongation at break > 80%) of the PLA/PCL blend remained constant even in the nanocomposite containing 5% OMMT. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43815.  相似文献   

13.
14.
Biodegradable poly(ε‐caprolactone) (PCL)/calcium carbonate (CaCO3) nanocomposites were prepared and characterized. Effect of CaCO3 on thermal and mechanical properties of PCL matrix was studied. Results showed that CaCO3 acts as a crystallization nucleating agent and introduction of CaCO3 leads to improved mechanical properties of the PCL matrix. PCL/CaCO3 nanocomposite foams were prepared using chemical foaming method. Cellular parameters such as mean cell size, cell wall thickness, and cell density were collected. The cellular structure of nanocomposite foams changes with different CaCO3 loading. Mean cell size achieved the minimum value at 5 wt% CaCO3 loading, and cell wall thickness increased with CaCO3 content. The changes in cellular structure and improvement of mechanical properties also enhanced the mechanical properties of PCL/CaCO3 nanocomposite foams. Compressive moduli of PCL/CaCO3 nanocomposite foams with similar density increased with increasing CaCO3 loading. POLYM. COMPOS., 31:1653–1661, 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ‐caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL‐30B hybrid nanocomposites. Besides, two samples of poly(ɛ‐caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X‐ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant. POLYM. COMPOS., 35:827–838, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Miscibility and thermal and mechanical properties of poly(butylene terephthalate) (PBT) blends with poly(ε‐caprolactone) (PCL) were analyzed as a function of the molecular mass of PCL. It was found that the components are miscible when oligomeric PCL is blended with PBT, probably due to favorable interactions between ? OH end groups of poly(ε‐caprolactone) and ester groups of PBT. In the blends containing high molar mass PCL, the concentration of hydroxyl end groups is lower, allowing only partial miscibility of the components. The resulting materials display good mechanical properties, with enhanced performance at rupture compared to plain PBT. POLYM. ENG. SCI., 47:323–329, 2007. © 2007 Society of Plastics Engineers.  相似文献   

17.
Blends of poly(ε‐caprolactone) (PCL) with pine resin, an extract from the plant Pinus caribaea—Hondurensis was prepared by melt mixing in mass ratios from 90/10 to 50/50. The thermal, crystallization, morphological, and mechanical properties of the blends were studied by differential scanning calorimetry, Fourier transform infrared spectroscopy, polarized optical microscopy, scanning electron microscopy, and tensile test. Enzymatic degradation of the blends was investigated using porcine pancreatic and Candida rugosa lipase. Antimicrobial activity of the blends was tested against four strains of bacteria; Staphylococcus aureas, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa using the zone inhibition method. Miscibility of the blends was confirmed by the depression in the equilibrium melting temperature ( T m 0 ) of PCL estimated from Hoffman–Weeks plot and the presence of extinction rings in the spherulites of blended PCL. Interactions between the two components involved the carbonyl and the C‐O‐C groups. The tensile strength of the blends with low pine resin content was comparable to PCL but decreased with higher pine gum content. Enzymatic degradation of the blends increased with increasing pine resin content. The blends showed antimicrobial property with all the bacteria except E. coli. The developed biomaterial shows promising candidacy in medical applications. POLYM. ENG. SCI., 59:E32–E41, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
The effect of graphite oxide (GO) as the enforcing filler on the properties of poly(?‐caprolactone) (PCL) was investigated in this study. Through the introduction of GO, the Young's modulus of PCL was increased from 340 to 1000 MPa, and the tensile strength of PCL was increased from 15 to 26 MPa. Furthermore, the interlayer distance of GO (0.6 nm) was found to expand to 1.1 nm in the PCL/GO composite, which indicated the intercalation of the PCL chain into the GO layers. Because of this intercalation structure of the PCL/GO composite, GO showed a higher reinforcing effect than graphite on the mechanical properties of PCL. The intercalation should have enabled much effective load transfer in the PCL/GO composites. Moreover, GO showed a nucleating effect toward the crystallization of PCL, as the nonisothermal crystallization peak temperature shifted from 25°C for pure PCL to about 34°C for the PCL/GO composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Biodegradable polycaprolactone/organoclay nanocomposites were prepared by solvent casting, using different amounts of filler and matrices differing by average molecular weight. Intercalated nanocomposites were obtained. The nanocomposites were characterized by wide‐angle X‐ray diffraction (WAXD) and small‐angle X‐ray scattering (SAXS) methods. Negligible variations in the degree of crystallinity were detected by WAXD. The thickness of crystalline lamellae, measured by SAXS, increased in low molecular weight polymer nanocomposites with increasing clay amount; this effect was weakened in matrices with high molecular weight. Differential scanning calorimetry showed an inhibiting effect of clay on crystallization. The composites' ductility was largely increased, whereas stiffness was retained. After biodegradation in compost, in all samples, the degree of crystallinity was increased, meaning that the less ordered portion of the sample was preferentially degraded. Clay slowed down the biodegradation rate, coherently with the observed increase in the lamellar thickness due to the filler. This may offer a strategy for tuning the biodegradability by calibrating their semicrystalline framework. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers.  相似文献   

20.
Four types of sago starch were incorporated into a poly(ε‐caprolactone) (PCL) matrix, native, predried, thermoplastic starch (TPS) granules and TPS. All systems were found to be phase‐separated. Tensile properties were obtained after formulation of various mixtures and processing of suitable test specimens. It was found that elongation at break of composites comprising native starch and thermoplastic starch decreases almost linearly with volume fraction of starch whereas tendencies to nonlinear dependencies were observed for predried and thermoplastic starch granules. Except for composites containing native starch, tensile strength was found to decrease linearly with volume fraction of starch. However, statistical analysis of the corresponding regression coefficients shows that the coefficients ruling the compostion dependence of tensile properties are not significantly different for the four starch types. One may conclude that in all cases, tensile properties decrease almost linearly with volume fraction and maximum volume fraction of starch loading is around 0.6. Scanning electron micrographs of fracture surfaces revealed weak interfacial adhesion between sago starch and the polymer matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号