首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we will present a Pc1D numerical simulation for heterojunction (HJ) silicon solar cells, and discuss their possibilities and limitations. By means of modeling and numerical computer simulation, the influence of emitter‐layer/intrinsic‐layer/crystalline‐Si heterostructures with different thickness and crystallinity on the solar cell performance is investigated and compared with hot wire chemical vapor deposition (HWCVD) experimental results. A new technique for characterization of n‐type microcrystalline silicon (n‐µc‐Si)/intrinsic amorphous silicon (i‐a‐Si)/crystalline silicon (c‐Si) heterojunction solar cells from Pc1D is developed. Results of numerical modeling as well as experimental data obtained using HWCVD on µc‐Si (n)/a‐Si (i)/c‐Si (p) heterojunction are presented. This work improves the understanding of HJ solar cells to derive arguments for design optimization. Some simulated parameters of solar cells were obtained: the best results for Jsc = 39·4 mA/cm2, Voc = 0·64 V, FF = 83%, and η = 21% have been achieved. After optimizing the deposition parameters of the n‐layer and the H2 pretreatment of solar cell, the single‐side HJ solar cells with Jsc = 34·6 mA/cm2, Voc = 0·615 V, FF = 71%, and an efficiency of 15·2% have been achieved. The double‐side HJ solar cell with Jsc = 34·8 mA/cm2, Voc = 0·645 V, FF = 73%, and an efficiency of 16·4% has been fabricated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A new ternary compound is synthesized for the first time, and bulk CuIn5Te8 single crystals are grown by directed crystallization of near-stoichiometric melt. It is established from X-ray diffraction patterns of grown crystals that they exhibit the structure of imperfect chalcopyrite with parameters of the unit cell of CuIn5Te8, which were close to those known for the CuInTe2 ternary compound with the composition index n = 0. First, photosensitive structures are fabricated based on CuIn5Te8 crystals, and photosensitivity spectra are obtained for them; it is shown that it is possible to achieve broadband photosensitivity under illumination of the barrier side of these crystals. From the analysis of photosensitivity spectra, the character of band-to-band transitions and corresponding energies of these transitions in CuIn5Te8 are determined. This opens up prospects to use this new semiconductor in photoconverters of solar radiation.  相似文献   

3.
Recent progress in fabricating Cd‐ and Se‐free wide‐gap chalcopyrite thin‐film solar devices with Zn(S,O) buffer layers prepared by an alternative chemical bath process (CBD) using thiourea as complexing agent is discussed. Zn(S,O) has a larger band gap (Eg = 3·6–3·8 eV) than the conventional buffer material CdS (Eg = 2·4 eV) currently used in chalcopyrite‐based thin films solar cells. Thus, Zn(S,O) is a potential alternative buffer material, which already results in Cd‐free solar cell devices with increased spectral response in the blue wavelength region if low‐gap chalcopyrites are used. Suitable conditions for reproducible deposition of good‐quality Zn(S,O) thin films on wide‐gap CuInS2 (‘CIS’) absorbers have been identified for an alternative, low‐temperature chemical route. The thickness of the different Zn(S,O) buffers and the coverage of the CIS absorber by those layers as well as their surface composition were controlled by scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray excited Auger electron spectroscopy. The minimum thickness required for a complete coverage of the rough CIS absorber by a Zn(S,O) layer deposited by this CBD process was estimated to ∼15 nm. The high transparency of this Zn(S,O) buffer layer in the short‐wavelength region leads to an increase of ∼1 mA/cm2 in the short‐circuit current density of corresponding CIS‐based solar cells. Active area efficiencies exceeding 11·0% (total area: 10·4%) have been achieved for the first time, with an open circuit voltage of 700·4 mV, a fill factor of 65·8% and a short‐circuit current density of 24·5 mA/cm2 (total area: 22·5 mA/cm2). These results are comparable to the performance of CdS buffered reference cells. First integrated series interconnected mini‐modules on 5 × 5 cm2 substrates have been prepared and already reach an efficiency (active area: 17·2 cm2) of above 8%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Microcrystalline silicon‐based single‐junction pin solar cells have been fabricated by very high‐frequency plasma enhanced chemical vapor deposition using a showerhead cathode at high pressures and under silane depletion conditions. The i‐layers are made near the transition from amorphous to crystalline. It was found that, especially at high crystalline fractions, the open‐circuit voltage and fill factor are very sensitive to the morphology of the substrate. At an i‐layer deposition rate 0·45 nm/s, we have measured a stabilised efficiency of 10% (Voc = 0·52 V, FF = 0·74) for a cell made on texture‐etched ZnO:Al. The performance is stable under light soaking. The defect density of the absorber layer is in the 1015 cm−3 range. In spite of the presence of oxygen contamination, good electrical properties and good infrared cell response are obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
CuIn1‐xGaxSe2 (CIGS) thin films were grown on Mo/soda lime glass using a reactive sputtering process in which a Se cracker was used to deliver reactive Se molecules. The Cu0·6 Ga0·4 and Cu0·4In0·6 targets were simultaneously sputtered under the delivery of reactive Se. The effects of Se flux on CIGS film deposition were investigated. The CIGS film growth rate decreased, and the surface roughness of a film increased as the Se flux increased. The [112] crystal orientation was dominant, and metallic crystal phases such as Cu9Ga4 and Cu16In9 in a film were disappearing with increasing Se flux. A solar cell fabricated using a 900‐nm CIGS film showed the power conversion efficiency of 8·6%, the highest value found in a sub‐micron thick CIGS solar cell related to a reactive sputtering process with metallic targets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Thin films of Cu-In-Se (CISe) photoabsorber with an overall composition of CuIn3Se5 were deposited onto glass/indium tin oxide (ITO) substrates from a polycrystalline bulk CuIn3Se5 source using the high-vacuum evaporation technique. Thermal conditions for the substrates during the evaporation process and the subsequent annealing in vacuum were selected to prepare polycrystalline n-CuIn3Se5 photoabsorber layers for use in hybrid photovoltaic structures based on an inorganic photoabsorber and conductive polymer functional layers. The CISe layers were deposited at a substrate temperature of 200°C and were annealed at temperatures from 300°C to 500°C in vacuum. Part of the as-deposited CISe was annealed twice, in argon and in vacuum at 500°C. These layers exhibited high photosensitivity and photoconductivity when illuminated with white light at an intensity of 100 mW/cm2. The results showed that the chalcopyrite structure of the prepared CISe photoabsorber films adhered well to the glass/ITO substrate. The average value of charge carrier concentration and the profile of charge carrier concentration in the annealed CISe photoabsorber layer were calculated using impedance spectroscopy.  相似文献   

7.
Unimorph cantilevers are made from 0.5BaTiO3‐0.5Sm2O3 (BTO‐SmO) self‐assembled vertical heteroepitaxial nanocomposite thin films, grown by PLD on (001) SrTiO3 single crystal substrates. The films remain piezoelectric up to at least 250 °C without losing any actuation. The longitudinal piezoelectric coefficient, d33, is ≈45 to 50 pm V?1 measured from room temperature to 250 °C. The transverse piezoelectric coefficient, d31, a key parameter of actuator performance, exceeds PZT (Pb1–xZrxTiO3) films at >200 pm V?1. Since the d31 coefficient was found to be positive, this opens up exciting new applications opportunities. The possible reasons for d31 > 0 are discussed in the light of 3D strain control in the nanocomposites.  相似文献   

8.
We apply ultra‐short pulse laser ablation to create local contact openings in thermally grown passivating SiO2 layers. This technique can be used for locally contacting oxide passivated Si solar cells. We use an industrially feasible laser with a pulse duration of τpulse ∼ 10 ps. The specific contact resistance that we reach with evaporated aluminium on a 100 Ω/sq and P‐diffused emitter is in the range of 0·3–1 mΩ cm2. Ultra‐short pulse laser ablation is sufficiently damage free to abandon wet chemical etching after ablation. We measure an emitter saturation current density of J0e = (6·2 ± 1·6) × 10−13 A/cm2 on the laser‐treated areas after a selective emitter diffusion with Rsheet ∼ 20 Ω/sq into the ablated area; a value that is as low as that of reference samples that have the SiO2 layer removed by HF‐etching. Thus, laser ablation of dielectrics with pulse durations of about 10 ps is well suited to fabricate high‐efficiency Si solar cells. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Antimony and tellurium were deposited on BK7 glass using direct-current magnetron and radiofrequency magnetron cosputtering. Antimony telluride thermoelectric thin films were synthesized with a heated substrate. The effects of substrate temperature on the structure, surface morphology, and thermoelectric properties of the thin films were investigated. X-ray diffraction patterns revealed that the thin films were well crystallized. c-Axis preferred orientation was observed in thin films deposited above 250°C. Scanning electron microscopy images showed hexagonal crystallites and crystal grains of around 500 nm in thin film fabricated at 250°C. Energy-dispersive spectroscopy indicated that a temperature of 250°C resulted in stoichiometric Sb2Te3. Sb2Te3 thin film deposited at room temperature exhibited the maximum Seebeck coefficient of 190 μV/K and the lowest power factor (PF), S 2 σ, of 8.75 × 10−5 W/mK2. When the substrate temperature was 250°C, the PF increased to its highest value of 3.26 × 10−3 W/mK2. The electrical conductivity and Seebeck coefficient of the thin film were 2.66 × 105 S/m and 113 μV/K, respectively.  相似文献   

10.
Highly porous N‐doped carbons have been successfully prepared by using KOH as activating agent and polypyrrole (PPy) as carbon precursor. These materials were investigated as sorbents for CO2 capture. The activation process was carried out under severe (KOH/PPy = 4) or mild (KOH/PPy = 2) activation conditions at different temperatures in the 600–800 °C range. Mildly activated carbons have two important characteristics: i) they contain a large number of nitrogen functional groups (up to 10.1 wt% N) identified as pyridonic‐N with a small proportion of pyridinic‐N groups, and ii) they exhibit, in relation to the carbons prepared with KOH/PPy = 4, narrower micropore sizes. The combination of both of these properties explains the large CO2 adsorption capacities of mildly activated carbon. In particular, a very high CO2 adsorption uptake of 6.2 mmol·g?1 (0 °C) was achieved for porous carbons prepared with KOH/PPy = 2 and 600 °C (1700 m2·g?1, pore size ≈ 1 nm and 10.1 wt% N). Furthermore, we observed that these porous carbons exhibit high CO2 adsorption rates, a good selectivity for CO2‐N2 separation and it can be easily regenerated.  相似文献   

11.
Polycrystalline CuIn1−xGaxSe2 (CIGS) thin films were deposited by the non‐vacuum, near‐atmospheric‐pressure selenization of stacked metallic precursor layers. A study was carried out to investigate the influence of significant factors of the absorber on the solar cells performance. An efficiency enhancement was obtained for Cu/(In+Ga) atomic ratios between 0·93 and 0·95. The slope of the observed energy bandgap grading showed a strong influence on the VOC and the short circuit current density JSC. An increase of the Ga content in the active region of the absorber was achieved by the introduction of a thin Ga layer on the Mo back contact. This led to an improvement of efficiency and VOC. Furthermore, an enhanced carrier collection was detected by quantum efficiency measurements when the absorber layer thickness was slightly decreased. Conversion efficiencies close to 10% have been obtained for these devices. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This work describes the design, simulation, fabrication process, and characterization of high voltage photovoltaic mini‐modules using silicon on insulator (SOI) wafers. The mini‐modules are made of a number of small area photovoltaic cells (<1 mm2) monolithically connected in series. Isolation between cells is performed by means of anisotropic etching of the active layer of the SOI wafer. Measurements using standard sunlight (AM1·5 100 mW/cm2) confirm the viability of this technology to fabricate small area arrays showing open circuit voltages, V oc, between 620 mV and 660 mV and photocurrent densities up to 22·3 mA/cm2 for single cells of 0·225 mm2 area and 10 µm active film thickness. Series connection scales up V oc and the maximum power, P m, from 625 mV and 21·2 µW, respectively, in a single cell to 103 V and 3·2 mW when 169 cells are connected in series in a 0·42 cm2 module total area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This paper reports on the development of a masked process for the production of buried contact solar cells on multi‐crystalline silicon. The process results in high efficiencies, and only includes steps that would be feasible in an industrial environment. We report here on different mask candidates and on the importance of hydrogenation with the new process. Using the developed process, we produced 111 large area (12 × 12 cm2) cells and achieved an average cell efficiency of 16·2%. The best cell had an efficiency of 16·9%, a Voc of 616 mV, a Jsc of 35·0 mA/cm2 and a fill factor of 78·3%. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The properties of fine‐line printed contacts on silicon solar cells, in combination with light‐induced plating (LIP), are presented. The seed layers are printed using an aerosol system and a new metallization ink called SISC developed at Fraunhofer ISE. The influence of multiple layer printing on the contact geometry is studied as well as the influence of the contact height on the line resistivity and on the contact resistance. The dependence between contact resistance and contact height is measured using the transfer length model (TLM). Further on, it is explained by taking SEM images of the metal–semiconductor interface, that a contact height of less than 1 µm or a minimum ink amount of only 4–6 mg is sufficient to contact a large area (15·6 cm × 15·6 cm) silicon solar cell on the front side and results in a contact resistance Rc × W < 0·5 Ω cm. As the line resistivity of fine‐line printed fingers needs to be reduced by LIP, three different plating solutions are tested on solar cells. The observed differences in line resistivity between ρf = 5 × 10−8 and 2 × 10−8 Ω m are explained by taking SEM pictures of the grown LIP‐silver. Finally, the optimum LIP height for different line resistivities is calculated and experimentally confirmed by processing solar cells with an increasing amount of LIP silver. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
High‐efficiency 4 cm2 screen‐printed (SP) textured cells were fabricated on 100 Ω/sq emitters using a rapid single‐step belt furnace firing process. The high contact quality resulted in a low series resistance of 0·79 Ωcm2, high shunt resistance of 48 836 Ωcm2, a low junction leakage current of 18·5 nA/cm2 (n2 = 2) yielding a high fill factor (FF) of 0·784 on 100 Ω/sq emitter. A low resistivity (0·6 Ωcm) FZ Si was used for the base to enhance the contribution of the high sheet‐resistance emitter without appreciably sacrificing the bulk lifetime. This resulted in a 19% efficient (confirmed at NREL) SP 4 cm2 cell on textured FZ silicon with SP contacts and single‐layer antireflection coating. This is apparently higher in performance than any other previously reported cell using standard screen‐printing approaches (i.e., single‐step firing and grid metallization). Detailed cell characterization and device modeling were performed to extract all the important device parameters of this 19% SP Si cell and provide guidelines for achieving 20% SP Si cells. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
An energy‐economical dye‐sensitized solar cell (DSSC) with highly flexible Ti/TiO2 photoanode was developed through a low‐temperature process, using a binder‐free TiO2 paste. Ti foils, coated with the binder‐free TiO2 films were annealed at various temperature. Scanning electron microscopic (SEM) images of the films show uniform, mesoporous and crack‐free surface morphologies as well as interpenetrated TiO2 network. DSSCs with binder‐free TiO2 films annealed at 450, 350, 250 and 120°C show solar‐to‐electricity conversion efficiencies (η) of 4.33, 4.34, 3.72 and 3.40%, respectively, which are comparable to the efficiency of 4.56% obtained by using a paste with binder and annealing it at 450°C; this observation demonstrates the benefits of a binder‐free TiO2 paste for the fabrication of energy‐fugal DSSCs. On the other hand, when organic binder was used in the TiO2 paste for film preparation, a drastic deterioration in the cell performance with decreasing annealing temperature is noticed. Laser‐induced photo‐voltage transient technique is used to estimate the electron lifetime in various Ti/TiO2 films. Electrochemical impedance spectroscopic (EIS) analysis shows that the lower the annealing temperature of the TiO2 coated Ti foil, the larger the charge transfer resistance at the TiO2/dye/electrolyte interface (Rct2). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The Bi2Te3?xSex family has constituted n‐type state‐of‐the‐art thermoelectric materials near room temperature (RT) for more than half a century, which dominates the active cooling and novel heat harvesting application near RT. However, the drawbacks of a brittle nature and Te‐content restricts the possibility for exploring potential applications. Here, it is shown that the Mg3+δSbxBi2?x family ((ZT)avg = 1.05) could be a promising substitute for the Bi2Te3?xSex family ((ZT)avg = 0.9–1.0) in the temperature range of 50–250 °C based on the comparable thermoelectric performance through a synergistic effect from the tunable bandgap using the alloy effect and the suppressible Mg‐vacancy formation using an interstitial Mn dopant. The former is to shift the optimal thermoelectric performance to near RT, and the latter is helpful to partially decouple the electrical transport and thermal transport in order to get an optimal RT power factor. The positive temperature dependence of the bandgap suggests this family is also a superior medium‐temperature thermoelectric material for the significantly suppressed bipolar effect. Furthermore, a two times higher mechanical toughness, compared with the Bi2Te3?xSex family, allows for a promising substitute for state‐of‐the‐art n‐type thermoelectric materials near RT.  相似文献   

18.
We report the growth and characterization of low‐bandgap record‐efficiency ZnO/CdS/CuInSe2 thin‐film solar cells. The total area conversion efficiency for this cell is 14·5%. This result has been measured and confirmed at the National Renewable Energy Laboratory under standard reporting conditions (1000 W/m2, 25°C, AM1·5 Global). The improved performance of the CuInSe2 solar cell is primarily due to a high current density. Material and device characterization data are presented.. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

19.
A new interdigital design for large area dye solar modules is developed for an area of 30×30 cm2. This design requires fewer holes in the glass substrate for electrolyte filling, than the conventional strip design. A complete manufacturing process of this module—ranging from screen printed layers to semi‐automated colouring and electrolyte filling—in a laboratory‐scale baseline is illustrated. As primary sealing method, a durable glass frit sealing is used. It is shown, that the lead (Pb) content present in many glass frit powders contaminates the catalytic platinum electrode during the sintering process, resulting in a lowering of the fill factor. A screen printable lead‐free glass frit paste is developed, which solves this problem. Long term stability tests are presented on 2·5 cm2 dye solar cells, which have been completely sealed with glass frit. In consecutively performed accelerated ageing tests under 85°C in the dark (about 1400 h) and continuous illumination with visible light (1 sun, about 1700 h), a 2·5 cm2 dye solar cell with an electrolyte based on propylmethylimidazolium iodide showed an overall degradation of less than 5% in conversion efficiency. In a subsequently performed thermal cycling test (−40°C to +85°C, 50 cycles) a 2·5 cm2 dye solar cell with the same electrolyte composition also showed only a slight degradation of less than 5% in conversion efficiency. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
An experimental study of the transport properties of a low‐bandgap conjugated polymer giving high photovoltaic quantum efficiencies in the near infrared spectral region (Eg‐opt ~ 1.35 eV) is presented. Using a organic thin film transistor geometry, we demonstrate a relatively high in‐plane hole mobility, up to 1.5 · × 10?2 cm2 V?1 s?1 and quantify the electron mobility at 3 × · 10?5 cm2 V?1 s?1 on a SiO2 dielectric. In addition, singular contact behavior results in bipolar quasi‐Ohmic injection both from low and high workfunction metals like LiF/Al and Au. X‐ray investigations revealed a degree of interchain π‐stacking that is probably embedded in a disordered matrix. Disorder also manifests itself in a strong positive field dependence of the hole mobility from the electric field. In blends made with the electron acceptor methanofullerene [6,6]‐phenyl C61 butyric acid methyl ester (PCBM), the transistor characteristics suggest a relatively unfavorable intermixing of the two components for the application to photovoltaic devices. We attribute this to a too fine dispersion of [C60]‐PCBM in the polymer matrix, that is also confirmed by the quenching of the photoluminescence signal measured in PCPDTBT [C60]‐PCBM films with various composition. We show that a higher degree of phase separation can be induced during the film formation by using 1,8‐octanedithiol (ODT), which leads to a more efficient electron percolation in the [C60]‐PCBM. In addition, the experimental results, in combination with those of solar cells seem to support the correlation between the blend morphology and charge recombination. We tentatively propose that the drift length, and similarly the electrical fill factor, can be limited by the recombination of holes with electrons trapped on isolated [C60]‐PCBM clusters. Ionized and isolated [C60]‐PCBM molecules can modify the local electric field in the solar cell by build‐up of a space‐charge. The results also suggest that further improvements of the fill factor may also be limited by a strong electrical‐field dependence of the hole transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号