首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phase-locked loop (PLL)-based frequency synthesizer at 5 GHz is designed and fabricated in 0.18-${rm mu}hbox{m}$ CMOS technology. The power consumption of the synthesizer is significantly reduced by using an injection-locked frequency divider (ILFD) as the first frequency divider in the PLL feedback loop. The synthesizer chip consumes 18 mW of power, of which only 3.93 mW is consumed by the voltage-controlled oscillator (VCO) and the ILFD at 1.8-V supply voltage. The VCO has the phase noise of $-$ 104 dBc/Hz at 1-MHz offset and an output tuning range of 740 MHz. The chip size is 1.1 mm $times$ 0.95 mm.   相似文献   

2.
A 50-GHz charge pump phase-locked loop (PLL) utilizing an LC-oscillator-based injection-locked frequency divider (ILFD) was fabricated in 0.13-mum logic CMOS process. The PLL can be locked from 45.9 to 50.5 GHz and output power level is around -10 dBm. The operating frequency range is increased by tracking the self-oscillation frequencies of the voltage-controlled oscillator (VCO) and the frequency divider. The PLL including buffers consumes 57 mW from 1.5/0.8-V supplies. The phase noise at 50 kHz, 1 MHz, and 10 MHz offset from the carrier is -63.5, -72, and -99 dBc/Hz, respectively. The PLL also outputs second-order harmonics at frequencies between 91.8 and 101 GHz. The output frequency of 101 GHz is the highest for signals locked by a PLL fabricated using the silicon integrated circuits technology.  相似文献   

3.
提出了一种宽带低相噪频率合成器的设计方法.采用了数字锁相技术,该锁相技术主要由锁相环(phase locked loop,PLL)芯片、有源环路滤波器、宽带压控振荡器和外置宽带分频器等构成,实现了10~20 GHz范围内任意频率输出,具有输出频率宽、相位噪声低、集成度高、功耗低和成本低等优点.最后对该PLL电路杂散抑制和相位噪声的指标进行了测试,测试结果表明该PLL输出10 GHz时相位噪声优于-109 dBc/Hz@1 kHz,该指标与直接式频率合成器实现的指标相当.  相似文献   

4.
A 1-V CMOS frequency synthesizer is proposed for wireless local area network 802.11a transceivers using a novel transformer-feedback voltage-controlled oscillator (VCO) for low voltage and a stacked frequency divider for low power. Implemented in a 0.18-mum CMOS process and operated at 1-V supply, the VCO measures a phase noise of -140.5 dBc at an offset of 20 MHz with a center frequency of 4.26 GHz and a power consumption of 5.17 mW. Its tuning range is as wide as 920 MHz (23%). By integrating the VCO into a frequency synthesizer, a phase noise of -140.1 dBc/Hz at an offset of 20 MHz is measured at a center frequency of 4.26 GHz. Its output frequency can be changed from 4.112 to 4.352 GHz by switching the 3-bit modulus of the programmable divider. The synthesizer consumes only 9.7 mW and occupies a chip area of 1.28 mm2.  相似文献   

5.
A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider   总被引:2,自引:0,他引:2  
The adoption of dynamic dividers in CMOS phase-locked loops for multigigahertz applications allows to reduce the power consumption substantially without impairing the phase noise and the power supply sensitivity of the phase-locked loop (PLL). A 5-GHz frequency synthesizer integrated in a 0.25-/spl mu/m CMOS technology demonstrates a total power consumption of 13.5 mW. The frequency divider combines the conventional and the extended true-single-phase-clock logics. The oscillator employs a rail-to-rail topology in order to ensure a proper divider function. This PLL intended for wireless LAN applications can synthesize frequencies between 5.14 and 5.70 GHz in steps of 20 MHz. The reference spurs at 10-MHz offset are as low as -70 dBc and the phase noise is lower than -116 dBc/Hz at 1 MHz over the whole tuning range.  相似文献   

6.
A 40-GHz phase-locked loop(PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator(VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector(PFD)and the charge pump(CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is –97.2 d Bc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 m W, including all the buffers.  相似文献   

7.
This paper describes a 1.8-GHz self-calibrated phase-locked loop (PLL) implemented in 0.35-μm CMOS technology. The PLL operates as an edge-combining type fractional-N frequency synthesizer using multiphase clock signals from a ring-type voltage-controlled oscillator (VCO). A self-calibration circuit in the PLL continuously adjusts delay mismatches among delay cells in the ring oscillator, eliminating the fractional spur commonly found in an edge-combing fractional divider due to the delay mismatches. With the calibration loop, the fractional spurs caused by the delay mismatches are reduced to -55 dBc, and the corresponding maximum phase offsets between the multiphase signals is less than 0.20. The frequency synthesizer PLL operates from 1.7 to 1.9 GHz and the closed-loop phase noise is -105 dBc/Hz at 100-kHz offset from the carrier. The overall circuit consumes 20 mA from a 3.0-V power supply  相似文献   

8.
A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm^2, including bias circuits and buffers.  相似文献   

9.
袁莉  周玉梅  张锋 《半导体技术》2011,36(6):451-454,473
设计并实现了一种采用电感电容振荡器的电荷泵锁相环,分析了锁相环中鉴频/鉴相器(PFD)、电荷泵(CP)、环路滤波器(LP)、电感电容压控振荡器(VCO)的电路结构和设计考虑。锁相环芯片采用0.13μm MS&RF CMOS工艺制造。测试结果表明,锁相环锁定的频率为5.6~6.9 GHz。在6.25 GHz时,参考杂散为-51.57 dBc;1 MHz频偏处相位噪声为-98.35 dBc/Hz;10 MHz频偏处相位噪声为-120.3 dBc/Hz;在1.2 V/3.3 V电源电压下,锁相环的功耗为51.6 mW。芯片总面积为1.334 mm2。  相似文献   

10.
A wideband frequency synthesizer is designed and fabricated in a 0.18 μm CMOS technology. It is developed for DRM/DRM+/DAB systems and is based on a programmable integer-N phase-locked loop. Instead of using several synthesizers for different bands, only one synthesizer is used, which has three separated divider paths to provide quadrature 8-phase LO signals. A wideband VCO covers a frequency band from 2.0 to 2.9 GHz, generates LO signals from 32 to 72 MHz, and from 250 to 362 MHz. In cooperation with a programmable XTAL multi-divider at the PLL input and output dividers at the PLL output, the frequency step can be altered from 1 to 25 kHz. It provides an average output phase noise of ?80 dBc/Hz at 10 kHz offset, ?95 dBc/Hz at 100 kHz offset, and ?120 dBc/Hz at 1 MHz offset for all the supported channels. The output power of the LO signals is tunable from 0 dBm to +3 dBm, and the phase of quadrature signals can also be adjusted through a varactor in the output buffer. The power consumption of the frequency synthesizer is 45 mW from a 1.8 V supply.  相似文献   

11.
A low-jitter RF phase locked loop (PLL) frequency synthesizer with high-speed mixed-signal down-scaling circuits is proposed.Several techniques are proposed to reduce the design complexity and improve the performance of the mixed-signal down-scaling circuit in the PLL.An improved D-latch is proposed to increase the speed and the driving capability of the DMP in the down-scaling circuit.Through integrating the D-latch with 'OR' logic for dual-modulus operation,the delays associated with both the 'OR' and D-flip-flop (DFF) operations are reduced,and the complexity of the circuit is also decreased.The programmable frequency divider of the down-scaling circuit is realized in a new method based on deep submicron CMOS technology standard cells and a more accurate wire-load model.The charge pump in the PLL is also realized with a novel architecture to improve the current matching characteristic so as to reduce the jitter of the system.The proposed RF PLL frequency synthesizer is realized with a TSMC 0.18-μm CMOS process.The measured phase noise of the PLL frequency synthesizer output at 100 kHz offset from the center frequency is only -101.52 dBc/Hz.The circuit exhibits a low RMS jitter of 3.3 ps.The power consumption of the PLL frequency synthesizer is also as low as 36 mW at a 1.8 V power supply.  相似文献   

12.
《Microelectronics Journal》2014,45(6):740-750
A low power frequency synthesizer for WLAN applications is proposed in this paper. The NMOS transistor-feedback voltage controlled oscillator (VCO) is designed for the purpose of decreasing phase noise. TSPC frequency divider is designed for widening the frequency range with keeping low the power consumption. The phase frequency detector (PFD) with XOR delay cell is designed to have the low blind and dead zone, also for neutralizing the charge pump (CP) output currents; the high gain operational amplifier and miller capacitors are applied to the circuit. The frequency synthesizer is simulated in 0.18 µm CMOS technology while it works at 1.8 V supply voltage. The VCO has a phase noise of −136 dBc/Hz at 1 MHz offset. It has 10.2% tuning range. With existence of a frequency divider in the frequency synthesizer loop the output frequency of the VCO can be divided into the maximum ratio of 18. It is considered that the power consumption of the frequency synthesizer is 4 mW and the chip area is 10,400 µm2.  相似文献   

13.
The design details of a low power/wide tuning range phase locked loop (PLL) is presented in 180 nm CMOS together with the simulated and post fabrication measured performance. The PLL has been specifically designed for applications requiring a wide tuning range (1.55–2.28 GHz) while maintaining low power consumption (18 mW) and good phase noise (−100.9 dBc/Hz at 1 MHz). The tuning range represents significant improvement over other reported PLL CMOS implementations. To illustrate the robustness of the architecture, a 90 nm CMOS design is included with a 5.8–9.45 GHz tuning range (48%), phase noise of −111.7 dBc/Hz, and power consumption of 18.6 mW. The stand alone voltage controlled oscillator (VCO) and the PLL were fabricated on a single 180 nm die providing a unique opportunity to analyze and measure both the stand alone VCO phase noise performance and the integrated PLL phase noise performance. The contributions to the PLL phase noise (phase detector, charge pump, VCO, divider, and reference source) are delineated and both the theoretical and measured PLL phase noise performance is discussed. Design tradeoffs are included such as effect of loop bandwidth on phase noise contributions.  相似文献   

14.
Liao  F.-R. Lu  S.-S. 《Electronics letters》2008,44(10):625-626
A 30 GHz VCO, using a transformer as the tank load and inter-stage coupling of the divider, is proposed such that the inductive load of the buffer between the VCO and the divider is eliminated and therefore chip area and power consumption can be reduced. The transformer is further reused by feedback to enhance the output swing of the VCO. Phase noise performance of the VCO can also be improved by the injection-lock mechanism from the reverse coupling of the divider. Measured results show that output phase noises of the VCO with (without) the divider are -125.1 (-118.6) dBc/Hz at 10 MHz offset frequencies from around 29.2 GHz carrier frequency. The power consumption of the VCO alone is 2.32 mW, while that of the VCO/divider increases only to 4.65 mW.  相似文献   

15.
A highly linear and fully-integrated frequency-modulated continuous-wave (FMCW) generator based on a fractional-N phase-locked loop (PLL) that is able to synthesize modulation schemes in 57–64 GHz range is proposed in this paper. The fractional-N PLL employs Colpitts voltage-controlled oscillator (VCO) at 60 GHz with 13.5% tuning range. Automatic amplitude and frequency calibrations are implemented to avoid drifts due to process, voltage and temperature variations and to set the center frequency of the VCO. Five-stage multi-modulus divider is used for division ratio switching, controlled by the sigma-delta (\(\Sigma \Delta\)) modulator MASH 1-1-1. The frequency sweep (chirp) bandwidth and duration are fully programmable via serial peripheral interface allowing up to 16 different chirps in complex modulation scheme. The PLL reference signal is 250 MHz provided by external low-noise signal generator which is also used for digital modules clock. The overall PLL phase noise is lower than ?80 dBc/Hz at 10 kHz offset and the chirp linearity is better than 0.01%. The complete FMCW synthesizer is implemented and verified as a stand-alone chip in a commercially available SiGe HBT 130 nm BiCMOS technology. The total chip area is \(2.04\,\text {mm}^2\), and the total power consumption is 280 mW.  相似文献   

16.
采用45 nm SOI CMOS工艺,设计了一种带有自适应频率校准单元的26~41 GHz 锁相环。该锁相环包括输入缓冲器、鉴频鉴相器、电荷泵、环路滤波器、压控振荡器、高速时钟选通器、分频器和频率数字校准单元。采用了基于双LC-VCO的整数分频锁相环,使用了自适应频率选择的数字校准算法,使得锁相环能在不同参考时钟下自适应地调整工作频率范围。仿真结果表明,该锁相环的输出频率能够连续覆盖26~41 GHz。输出频率为26 GHz时,相位噪声为-103 dBc/Hz@10 MHz,功耗为34.64 mW。输出频率为41 GHz时,相位噪声为-96 dBc/Hz@10 MHz,功耗为35.44 mW。  相似文献   

17.
A 1.5-V 5.5-GHz fully integrated phase-locked loop (PLL) has been implemented in a 0.25-μm foundry digital CMOS process. From a 5.5-GHz carrier, the in-band phase noise can be as low as -88 dBc/Hz at a 40-kHz offset, while the phase noise for the free-running VCO is -116 dBc/Hz at an 1-MHz offset. The VCO core current is 4.6 mA. The prescaler is implemented using a variation of the source-coupled logic (SCL) structure to reduce the switching noise, and thus to reduce the PLL side-band spurs. At -18 dBm signal power measured off chip, the switching noise coupled through substrate and metal interconnect generates spurs with power levels less than -99 dBm when the loop is open. A new charge-pump circuit is developed to reduce the current glitch at the output node. By incorporating a voltage doubler, the voltage dynamic range at the charge-pump output and thus the VCO control voltage range is increased from 1.3 to 2.6 V with immeasurable phase noise and spurious level degradation to the PLL. When the loop is closed, the power levels of side-band spurs at the offset frequency equal to the ~43-MHz reference frequency are < -69 dBc. The total power consumption of the PLL including that for the output buffers is ~23 mW  相似文献   

18.
本文提出了一个具有自调谐,自适应功能的1.9GHz的分数/整数锁相环频率综合器.该频率综合器采用模拟调谐和数字调谐相结合的技术来提高相位噪声性能.自适应环路被用来实现带宽自动调整,可以缩短环路的建立时间.通过打开或者关断 ΣΔ 调制器的输出来实现分数和整数分频两种工作模式,仅用一个可编程计数器实现吞脉冲分频器的功能.采用偏置滤波技术以及差分电感,在片压控振荡器具有很低的相位噪声;通过采用开关电容阵列,该压控振荡器可以工作在1.7GHz~2.1GHz的调谐范围.该频率综合器采用0.18 μ m,1.8V SMIC CMOS工艺实现.SpectreVerilog仿真表明:该频率综合器的环路带宽约为100kHz,在600kHz处的相位噪声优于-123dBc/Hz,具有小于15 μ s的锁定时间.  相似文献   

19.
A fully integrated V-band phase-locked loop (PLL) MMIC with good phase noise and low-power consumption is developed using 0.15-/spl mu/m GaAs pHEMTs. For V-band frequency division,a wideband divide-by-3 frequency divider is proposed using cascode FET-based harmonic injection locking. The fourth subharmonic mixer using anti-parallel diode pair is employed as a high-frequency phase detector. In this way, the required frequency of the reference oscillator is lowered to one twelfth of V-band output signal. An RC low-pass filter and DC amplifier are also integrated to effectively suppress the spurious and harmonic signals, and to increase the loop gain. To reduce the circuit interactions and frequency pulling effect, buffer amplifiers are used at the output of VCO and frequency divider. The fabricated V-band PLL MMIC shows the locking range of 840 MHz around 60.1GHz under a very low power dissipation of 370 mW. Good phase noise of -95.5 dBc/Hz is measured at 100 kHz offset. The chip size is as small as 2.35/spl times/1.80 mm/sup 2/. To the best of our knowledge, the PLL MMIC of this work is one of the highest frequency monolithic PLLs that integrates all the required elements on a single chip.  相似文献   

20.
A fractional-N frequency synthesizer fabricated in a 0.13 μm CMOS technology is presented for the application of IEEE 802.11 b/g wireless local area network (WLAN) transceivers.A monolithic LC voltage controlled oscillator (VCO) is implemented with an on-chip symmetric inductor.The fractional-N frequency divider consists of a pulse swallow frequency divider and a 3rd-order multistage noise shaping (MASH) △ ∑ modulator with noise-shaped dithering techniques.Measurement results show that in all channels,phase noise of the synthesizer achieves -93 dBc/Hz and -118 dBc/Hz in band and out of band respectively with a phase-frequency detector (PFD) frequency of 20 MHz and a loop bandwidth of 100 kHz.The integrated RMS phase error is no more than 0.8°.The proposed synthesizer consumes 8.4 mW from a 1.2 V supply and occupies an area of 0.86 mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号