首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spherical optical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), have been produced in sizes including 20 and 200 nm in diameter. These sensors are fabricated in a microemulsion and consist of fluorescent indicators entrapped in a polyacrylamide matrix. A generalized polymerization method has been developed that permits production of sensors containing any hydrophilic dye or combination of dyes in the matrix. The PEBBLE matrix protects the fluorescent dye from interference by proteins, allowing reliable in vivo calibrations of dyes. Sensor response times are less than 1 ms. Cell viability assays indicate that the PEBBLEs are biocompatible, with negligible biological effects compared to control conditions. Several sensor delivery methods have been studied, including liposomal delivery, gene gun bombardment, and picoinjection into single living cells.  相似文献   

2.
Fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), in the 500 nm-1 microm size range have been developed using decyl methacrylate as a matrix. A general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and decyl methacrylate ion-selective electrodes. We have applied these optically silent ionophores to fluorescence-based sensing by using ion-exchange and highly selective pH chromoionophores. This allows the tailoring of selective submicrometer sensors for use in intracellular measurements of important analytes for which selective enough fluorescent probes do not exist. The protocol for sensor development has been worked out for potassium sensing. It is based on the BME-44 ionophore (2-dodecyl-2-methyl-1,3-propanediylbis[N-[5'nitro(benzo-15-crown-5)-4'-yl]carbamate]). The general scheme should work for any available ionophore used in PVC or decyl methacrylate ion-selective electrodes, with minor adjustments to account for differences in ionophore charge and analyte binding constant. The reversible and highly selective sensors developed have a subsecond response time and an adjustable dynamic range. Applications to live C6 glioma cells demonstrate their utility; the intracellular potassium activity is followed in real time upon extracellular administration of kainic acid.  相似文献   

3.
Ca(2+) is a universal second messenger and plays a major role in intracellular signaling, metabolism, and a wide range of cellular processes. To date, one of the most successful approaches for intracellular Ca(2+) measurement involves the introduction of optically sensitive Ca(2+) indicators into living cells, combined with digital imaging microscopy. However, the use of free Ca(2+) indicators for intracellular sensing and imaging has several limitations, such as nonratiometric measurement for the most-sensitive indicators, cytotoxicity of the indicators, interference from nonspecific binding caused by cellular biomacromolecules, challenging calibration, and unwanted sequestration of the indicator molecules. These problems are minimized when the Ca(2+) indicators are encapsulated inside porous and inert polyacrylamide nanoparticles. We present PEBBLE nanosensors encapsulated with rhodamine-based Ca(2+) fluorescence indicators. The rhod-2-containing PEBBLEs presented here show a stable sensing range at near-neutral pH (pH 6-9). Because of the protection of the PEBBLE matrix, the interference of protein-nonspecific binding to the indicator is minimal. The rhod-2 PEBBLEs give a nanomolar dynamic sensing range for both in-solution (K(d) = 478 nM) and intracellular (K(d) = 293 nM) measurements. These nanosensors are useful quantitative tools for the measurement and imaging of the cytosolic nanomolar free Ca(2+) levels.  相似文献   

4.
Perlette J  Tan W 《Analytical chemistry》2001,73(22):5544-5550
A molecular beacon, an oligonucleotide probe with inherent signal transduction mechanisms, is an optimal tool for visualizing real-time mRNA hybridization in single living cells. Each molecular beacon (MB) consists of a single-stranded DNA molecule in a stem-loop conformation with a fluorophore linked to the 5' end and a quencher at the 3' end. In this study, we demonstrate real-time monitoring of mRNA-DNA hybridization inside living cells using molecular beacons. A MB specific for beta-actin mRNA has been designed and synthesized. After microinjection into the cytoplasm of single living kangaroo rat kidney cells (PtK2 cells), the MB hybridizes with beta-actin mRNA as shown by fluorescence measurements over time. Hybridization dynamics have been followed. Strict control experiments have been carried out to confirm that the fluorescence signal increase is indeed due to the hybridization of mRNA inside single living cells. Variation in the MB/mRNA hybridization fluorescent signal has been observed for different PtK2 cells, which indicates the amount of mRNA in different cells is different. We have also monitored the beta-1 andrenergic receptor mRNA inside the PtK2 cells. These studies demonstrate the feasibility of using MBs and the ultrasensitivity achieved in our fluorescence imaging system for real-time detection of mRNA hybridization and for the visualization of oligonucleotide/mRNA interactions inside single living cells.  相似文献   

5.
The first sol-gel-based, ratiometric, optical nanosensors, or sol-gel probes encapsulated by biologically localized embedding (PEBBLEs), are made and demonstrated here to enable reliable, real-time measurements of subcellular molecular oxygen. Sensors were made using a modified St?ber method, with poly(ethylene glycol) as a steric stabilizer. The radii of these spherical PEBBLE sensors range from about 50 to 300 nm. These sensors incorporate an oxygen-sensitive fluorescent indicator, Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline) chloride ([Ru(dpp)3]2+), and an oxygen-insensitive fluorescent dye, Oregon Green 488-dextran, as a reference for the purpose of ratiometric intensity measurements. The PEBBLE sensors have excellent reversibility, dynamic range, and stability to leaching and photobleaching. The small size and inert matrix of these sensors allow them to be inserted into living cells with minimal physical and chemical perturbations to their biological functions. Applications of sol-gel PEBBLEs inserted in rat C6 glioma cells for real-time intracellular oxygen analysis are demonstrated. Compared to using free dyes for intracellular measurements, the PEBBLE matrix protects the fluorescent dyes from interference by proteins in cells, enabling reliable in vivo chemical analysis. Conversely, the matrix also significantly reduces the toxicity of the indicator and reference dyes to the cells, so that a wide variety of dyes can be used in optimal fashion.  相似文献   

6.
Li X  Li PC 《Analytical chemistry》2005,77(14):4315-4322
A microfluidic method to study the contraction of a single cardiac myocyte (heart muscle cell) has been developed. This method integrates various single-cell operations as well as on-chip dye loading, and quantitative analysis of intracellular calcium concentration, [Ca2+]i. After the channel enlargement by on-chip etching to accommodate large-sized cardiac myocytes, a single cell is selected and retained at a V-shaped cell retention structure within the microchip. Owing to the fragile property of the cardiac myocytes that could easily be damaged by centrifugation, the calcium-sensitive fluorescent dye was loaded in the cell by on-chip dye loading. This on-chip method minimized the damage to the cells from the use of a centrifuge in the conventional method and provided a way of cellular analysis of fragile cells. Subsequently, quantitative analysis of [Ca2+]i of a single cardiac myocyte by fluorescence measurement was achieved for the first time in a microfluidic chip, thanks to the intracellular calcium stimulant of ionomycin. The resting [Ca2+]i of the cardiomyocyte determined was consistent with the literature value. From the spontaneous contraction study, it was found that fluorescence intensity cannot represent the [Ca2+]i variation accurately, which implied the importance of the quantitative analysis of [Ca2+]i.  相似文献   

7.
This paper describes the synthesis and characterization of micrometric phospholipid-coated polystyrene particles, named lipobeads, with pH-sensing capability and their application for intracellular pH measurements in murine macrophages. The phospholipids used to coat the particles are labeled with fluorescein (a pH-sensitive dye) and tetramethylrhodamine (a pH-insensitive dye), which serves as a referencing fluorophore for increased accuracy of the pH measurements. The synthesis of the pH-sensing lipobeads is realized by the covalent attachment of the fluorescent phospholipids to the surface of carboxylated polystyrene particles. The pH dynamic range of the sensing particles is between 5.5 and 7.0 with a sensitivity of 0.1 pH unit. The excitation light intensity is reduced to minimize photobleaching of the fluorescein-phospholipid conjugates. The fluorescent lipobeads are used to measure the pH in single macrophages. The lipobeads are ingested by the macrophages and directed to lysosomes, which are the cellular organelles involved in the phagocytosis process. Despite the high lysosomal levels of digestive enzymes and acidity, the absorbed particles remain stable for over 6 h in the cells when they are stored in a phosphate-buffered saline solution at pH 7.4.  相似文献   

8.
The analysis and modeling of SAW resonator devices based on the coupling-of-modes (COM) theory are described, integrating the effect of polymer coating so that the sensor effects can be accounted for in the device transfer function. Based on the perturbation method, the effects of film coating are included in determining the parameters for the model. The COM parameters are, therefore, modified and its simple analytical approaches are presented. The model is validated using the experimental data of a two-port SAW resonator device fabricated on ST-X quartz substrate. The experimental results for a device coated with Parylene C are compared with the simulation results of the proposed model. The comparative results of the electrical characteristics and the frequency sensitivity to film thickness show a good agreement which proves the validity of the model. This analysis and model will provide insight into the influence of the device design parameters on the sensor performance and help in practical design and optimization of SAW-based chemical sensor systems.  相似文献   

9.
The concept of using immobilized nucleic acid stains as detection chemistry to fabricate optical bacterial sensors is first demonstrated. SYTO 13 (a green fluorescent cell stain) is used as the molecular recognition element and fluorescent reporter in the sensor. The sensor responds to aqueous and aerosolized bacterial samples in 15 and 30 min, respectively. In addition, the sensor can discriminate a change in Pseudomonas aeruginosa (Pa) cell concentration of 1 order of magnitude or less and can detect down to 2.4 x 10(5) cells/mL of Pa cells. The utility of the sensor is demonstrated by monitoring the growth of a Pa cell culture over a period of 50 h.  相似文献   

10.
Microfluidic devices for the high-throughput chemical analysis of cells   总被引:1,自引:0,他引:1  
A microfluidic device is reported that integrated cell handling, rapid cell lysis, and electrophoretic separation and detection of fluorescent cytosolic dyes. The device function was demonstrated using Jurkat cells that were loaded with the fluorogenic dyes - carboxyfluorescein diacetate, Oregon green carboxylic acid diacetate, or Calcein AM. The loaded cells were hydrodynamically transported from the cell-containing reservoir to a region on the microfluidic device where they were focused and then rapidly lysed using an electric field. Complete lysis was accomplished in <33 ms. The hydrolyzed, fluorescent dyes in the cell lysate were automatically injected into a separation channel on the device and detected 3 mm downstream of the injection point. The total separation time was approximately 2.2 s with absolute migration time reproducibilities of <1% and efficiencies ranging from 2300 to 4000 theoretical plates. Results from 139 cells are reported. A small fraction of these cells, approximately 9%, were found to enzymatically hydrolyze the loaded dyes in a manner significantly different from the majority of the cells. Cell analysis rates of 7-12 cells/min were demonstrated and are >100 times faster than those reported using standard bench-scale capillary electrophoresis.  相似文献   

11.
At the cellular level, a small number of protein molecules (receptors) can induce significant cellular responses, emphasizing the importance of molecular detection of trace amounts of protein on single living cells. In this study, we designed and synthesized silver nanoparticle biosensors (AgMMUA-IgG) by functionalizing 11.6 +/- 3.5-nm Ag nanoparticles with a mixed monolayer of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (1:3 mole ratio) and covalently conjugating IgG with MUA on the nanoparticle surface. We found that the nanoparticle biosensors preserve their biological activity and photostability and can be utilized to quantitatively detect individual receptor molecules (T-ZZ), map the distribution of receptors (0.21-0.37 molecule/microm(2)), and measure their binding affinity and kinetics at concentrations below their dissociation constant on single living cells in real time over hours. The dynamic range of detection is 0-50 molecules per cell. We also found that the binding rate (2-27 molecules/min) is highly dependent upon the coverage of receptors on living cells and their ligand concentration. The binding association and dissociation rate constants and affinity constant are k1 = (9.0 +/- 2.6) x 10(3) M(-1) s(-1), k(-1) = (3.0 +/- 0.4) x 10(-4) s(-1), and KB = (4.3 +/- 1.1) x 10(7) M(-1), respectively.  相似文献   

12.
13.
The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.  相似文献   

14.
The flowing afterglow-atmospheric pressure glow discharge (APGD) ionization source described in part 1 of this study (in this issue) is applied to the direct analysis of condensed-phase samples. When either liquids or solids are exposed to the ionizing beam of the APGD, strong signals for the molecular ions of substances present on their surfaces can be detected without compromising the integrity of the solid sample structure or sample substrate. As was observed for gas-phase compounds in part 1 of this study, both polar and nonpolar substances can be ionized and detected by mass spectrometry. The parent molecular ion (or its protonated counterpart) is usually the main spectral feature, with little or no fragmentation in evidence. Preliminary quantitative results show that this approach offers very good sensitivity (detection limits in the picogram regime are reported for several test compounds in part 1 of this study) and linear response to the analyte concentration. Examples of the application of this strategy to the analysis of real-world samples, such as the direct analysis of pharmaceutical compounds or foods is provided. The ability of this source to perform spatially resolved analysis is also demonstrated. Preliminary studies of the mechanisms of the reactions involved are described.  相似文献   

15.
Optical sensors for the determination of highly concentrated bases such as NaOH (1-10 M) and materials to make these sensors have been characterized by X-ray photoelectron spectroscopy, 29Si solid-state NMR, FT-IR, and measurements of film porosity, surface area, and thickness. The bonding character and composition of the Si-Zr mixed oxides-organic polymer composites were evaluated. These studies suggest that there are Si-O-Zr matrixes in the mixed oxides, and that the Si-O-Zr matrixes contribute to the durability of the base sensors in highly alkaline solutions. The performance of these base sensors has been studied in detail as well. These sensors were stable for approximately 120 days, exhibited short response times (typically <10 s), and were fully reversible with minimal hysteresis effects in NaOH-ROH-H2O solutions (R = Me, Et, and i-Pr).  相似文献   

16.
Peng XY  Li PC 《Analytical chemistry》2004,76(18):5282-5292
Using a three-dimensional flow control concept to manipulate and retain a single yeast cell in a microchip, we were able to study the kinetics of intracellular metabolism and calcium mobilization at the single-cell level, as stimulated by glucose and pH changes. As a model study, the fluorogenic substrate fluorescein diacetate (FDA) was chosen to study how the intracellular carboxylesterase metabolize it. A single yeast cell was first cultured in the microchip. Thereafter, under a constant concentration of FDA, influx of FDA into the yeast cell occurred and FDA was hydrolyzed or metabolized. It was found that changes in both pH and glucose stimulated the FDA metabolism in a yeast cell, and the stimuli can elicit multiple responses from the cell. Since it was carried out within the microchip, the whole experiment on one single yeast cell could last for as long as 10 h. The dormant cell, budding cell, and pretreated budding cell (in low-pH buffer) of yeast resulted in different responses. Experimental data provided details on the FDA metabolism at the single-cell level and revealed strong correlations between FDA metabolism and calcium mobilization. Furthermore, efflux of the FDA metabolite fluorescein could start spontaneously if there was glucose in the medium. The experiments on a single cell were of the "human cell conservation" style because the cell responded to the reagent changes implemented by the human researcher. A mathematical model was also developed to study the influx-hydrolysis-efflux processes of the FDA metabolism using single-cell fluorescent data. These long overdue single-cell experiments are now rendered possible using the three-dimensional flow control in the microchip.  相似文献   

17.
We have demonstrated controlled preparation of Ni(DMG)2 microrods/tubes via chemical reaction method. By manipulating the reaction kinetics via the concentration of reactants, shapes of the resulting microstructures can be easily tuned from microrods to microtubes. Size of the resulting products can also be controlled through changing the reaction temperatures. It was proposed that under high reactants' concentrations, molecules will prefer to grow at corners or edges of nuclei with high free energies, to reduce the total energy in the system, which would lead to partial or complete hollow interiors and eventually resulted in mircotubes. The fact that DMG show high selectivity with Ni2+ and accompanied with obvious color change enable us to fabricate test strip for naked-eye detection of Ni2+. Benefit from the large surface areas of DMG nanoparticles on the test strip, the detection limit is improved by two orders over that of conventional solution method. This strategy is sensitive, simple and easy to handle, thus expected to possess potentials for the practical Ni2+ detection applications.  相似文献   

18.
Optical chemical sensing of pH and water content in organic solvents is proposed, using multiinformation dyes (MIDs) based on the support matrixes for the dyes. In this investigation, four kinds of merocyanine-type dyes having a polymerizable olefin unit as the MIDs were synthesized. These dyes were copolymerized with hydrophilic monomer molecules to obtain dye-immobilized optical chemical sensor (optode) membranes. In this case, selection of the monomer molecule gave optode membranes having different color change properties, because different monomer molecules provided different chemical environments around the immobilized dye. These optode membranes were used for the measurement of pH and water content in organic solvents. These membranes offered two-dimensional sensing information in one spectrum when they were employed for water content sensing in organic solvents, in which the maximum wavelength represents the water content and the absorbance at this wavelength represents the pH of the water present. These polymer membranes have a long lifetime, which can be adequate for practical use.  相似文献   

19.
Less classical than far-field acoustic investigations of solid materials and/or solid–liquid interfaces, near-field acoustic properties of an acoustic solid wave guide (tip), thin enough at its termination to present an external diameter smaller than the excitation acoustic wave wavelength, is shown to be able to probe interface properties. As a result of that, these near-field acoustic probes can play the role of chemical sensors, if chemical modifications or chemical reactions are concerned at their surface. In that context, a chemical sensor was realized by electrochemical deposition of an electron-conducting polymer (polypyrrole–biotin) on a metal tip, followed by enzyme attachment by molecular recognition process involving the biotin–avidin-specific interaction. Results from near-field acoustic showed that the enzyme modification of the polymer layer can be detected by this new acoustic sensor.  相似文献   

20.
It is shown that, as a result of the qualitative and quantitative (fractal) analyses of the panoramas of deformation patterns of single-crystal sensors of certain crystallographic orientations rigidly fastened to mechanically loaded objects, it is possible to determine the localization of defects both in macroscopically homogeneous and inhomogeneous (e.g., welded) structural elements. We study the internal structure of strips in the patterns of different scales and reveal their determining role in the realization of the hydrodynamic plastic flow of the crystal in the case of retardation of dislocation slip. The possibility of practical application of single-crystal sensors is analyzed. __________ Translated from Problemy Prochnosti, No. 2, pp. 93–104, March–April, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号