首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
Activation of the tyrosine kinase JAK2 is an essential step in cellular signaling by growth hormone (GH) and multiple other hormones and cytokines. Murine JAK2 has a total of 49 tyrosines which, if phosphorylated, could serve as docking sites for Src homology 2 (SH2) or phosphotyrosine binding domain-containing signaling molecules. Using a yeast two-hybrid screen of a rat adipocyte cDNA library, we identified a splicing variant of the SH2 domain-containing protein SH2-B, designated SH2-Bbeta, as a JAK2-interacting protein. The carboxyl terminus of SH2-Bbeta (SH2-Bbetac), which contains the SH2 domain, specifically interacts with kinase-active, tyrosyl-phosphorylated JAK2 but not kinase-inactive, unphosphorylated JAK2 in the yeast two-hybrid system. In COS cells coexpressing SH2-Bbeta or SH2-Bbetac and murine JAK2, both SH2-Bbetac and SH2-Bbeta coimmunoprecipitate to a significantly greater extent with wild-type, tyrosyl-phosphorylated JAK2 than with kinase-inactive, unphosphorylated JAK2. SH2-Bbetac also binds to immunoprecipitated wild-type but not kinase-inactive JAK2 in a far Western blot. In 3T3-F442A cells, GH stimulates the interaction of SH2-Bbeta with tyrosyl-phosphorylated JAK2 both in vitro, as assessed by binding of JAK2 in cell lysates to glutathione S-transferase (GST)-SH2-Bbetac or GST-SH2-Bbeta fusion proteins, and in vivo, as assessed by coimmunoprecipitation of JAK2 with SH2-Bbeta. GH promoted a transient and dose-dependent tyrosyl phosphorylation of SH2-Bbeta in 3T3-F442A cells, further suggesting the involvement of SH2-Bbeta in GH signaling. Consistent with SH2-Bbeta being a substrate of JAK2, SH2-Bbetac is tyrosyl phosphorylated when coexpressed with wild-type but not kinase-inactive JAK2 in both yeast and COS cells. SH2-Bbeta was also tyrosyl phosphorylated in response to gamma interferon, a cytokine that activates JAK2 and JAK1. These data suggest that GH-induced activation and phosphorylation of JAK2 recruits SH2-Bbeta and its associated signaling molecules into a GHR-JAK2 complex, thereby initiating some as yet unidentified signal transduction pathways. These pathways are likely to be shared by other cytokines that activate JAK2.  相似文献   

3.
Screening of a yeast two-hybrid library for proteins that interact with the kinase domain of an S-locus receptor kinase (SRK) resulted in the isolation of a plant protein called ARC1 (Arm Repeat Containing). This interaction was mediated by the C-terminal region of ARC1 in which five arm repeat units were identified. Using the yeast two-hybrid system and in vitro binding assays, ARC1 was found to interact specifically with the kinase domains from SRK-910 and SRK-A14 but failed to interact with kinase domains from two different Arabidopsis receptor-like kinases. In addition, treatment with a protein phosphatase or the use of a kinase-inactive mutant reduced or abolished the binding of ARC1 to the SRK-910 kinase domain, indicating that the interaction was phosphorylation dependent. Lastly, RNA blot analysis revealed that the expression of ARC1 is restricted to the stigma, the site of the self-incompatibility response.  相似文献   

4.
Random mutagenesis of human papillomavirus type 16 (HPV16) E1 was used to generate E1 missense mutants defective for interaction with either hUBC9 or 16E1-BP, two cDNAs encoding proteins that have been identified by their ability to interact with HPV16 E1 in two-hybrid assays. hUBC9, the human counterpart of Saccharomyces cerevisiae UBC9, is a ubiquitin-conjugating enzyme known to be involved in cell cycle progression. 16E1-BP encodes a protein of no known function but does contain an ATPase signature motif. Eight hUBC9 or 16E1-BP interaction-defective HPV16 E1 missense mutants were identified and characterized for origin-dependent transient DNA replication, ATPase activity, and various protein-protein interaction phenotypes. Six of these mutant E1 proteins were significantly impaired for replication. Among these, two classes of replication-defective HPV16 E1 missense mutants were observed. One class, represented by the S330R replication-defective mutant (containing an S-to-R change at position 330), remained competent for all protein-protein interactions tested, with the exception of hUBC9 association. Furthermore, this mutant, unlike the other replication-defective HPV16 E1 missense mutants, had a strong dominant negative replication phenotype in transient-replication assays. The other class, represented by five of the missense mutants, was defective for multiple protein-protein interactions, usually including, but not limited to, the interaction defect for which each mutant was originally selected. In many cases, a single missense mutation in one region of HPV16 E1 had pleiotropic effects, even upon activities thought to be associated with other domains of HPV16 E1. This suggests that E1 proteins are not modular but may instead be composed of multiple structurally and/or functionally interdependent domains.  相似文献   

5.
6.
7.
The ATF2 gene, which encodes alcohol acetyltransferase II (AATase II), was cloned from Saccharomyces cerevisiae Kyokai No. 7 (sake yeast). The ATF2 gene coded for a protein of 535 amino acid residues with a calculated molecular mass of 61,909 daltons. The deduced amino acid sequences of the ATF2 showed 36.9% similarity with that of ATF1, which encodes AATase I. The hydrophobicity profiles for the Atf2 protein and Atf1 protein were similar. A transformant carrying multiple copies of the ATF2 gene had 2.5-fold greater AATase activity than the control, and this activity was not significantly inhibited by linoleic acid. A Southern analysis of the yeast genomes in which the ATF2 gene was used as a probe showed that S. cerevisiae and brewery larger yeast have one ATF2 gene, while S. bayanus has no similar gene.  相似文献   

8.
9.
10.
11.
12.
13.
Fluoride is known to increase bone mass in vivo, probably through stimulation of osteoblast proliferation; however, the mechanisms of fluoroaluminate action in osteoblasts have not yet been elucidated. We have previously shown that in osteoblastic MC3T3-E1 cells, fluoroaluminate stimulates G protein-mediated protein tyrosine phosphorylation (Scaronuscarona, M., Standke, G. J. R., Jeschke, M., and Rohner, D. (1997) Biochem. Biophys. Res. Commun. 235, 680-684). Although the Ser/Thr kinases Erk1, Erk2, and p70(S6K) were activated in response to fluoroaluminate, the identity of fluoroaluminate-activated tyrosine kinase(s) remained elusive. In this study, we show that in MC3T3-E1 cells, fluoroaluminate induces a 110-kDa tyrosine-phosphorylated protein that we identify as Pyk2, a cytoplasmic tyrosine kinase related to Fak (focal adhesion kinase). The tyrosine phosphorylation of Pyk2 increased in a dose- and time-dependent manner. The autophosphorylation activity of Pyk2 increased 3-fold and reached its maximum within 10 min of fluoroaluminate treatment. Fluoroaluminate also induced activation of Src and the association of Pyk2 with Src. The phosphorylation of Src-associated Pyk2 increased >20-fold in in vitro kinase assays, suggesting that Pyk2 is phosphorylated by Src. Although MC3T3-E1 cells express much more Fak than Pyk2, Src preferentially associated with Pyk2. In vitro, Pyk2 bound to the Src SH2 domain, suggesting that this interaction mediates the Src-Pyk2 association in cells. These data indicate that osteoblastic cells express Pyk2, which is tyrosine-phosphorylated and activated in response to G protein activation by fluoroaluminate, and that the mechanism of Pyk2 activation most likely involves Src. Thus, Src and Pyk2 are tyrosine kinases involved in G protein-mediated tyrosine phosphorylation in osteoblastic cells and may be important for the osteogenic action of fluoroaluminate.  相似文献   

14.
15.
16.
We compared the interaction between the insulin receptor (IR) and the IR substrate (IRS) proteins IRS-1 and IRS-2) using the yeast two-hybrid system. Both IRS proteins interact specifically with the cytoplasmic portion of the IR and the related insulin-like growth factor-I receptor, and these interactions require receptor tyrosine kinase activity. Alignment of IRS-1 and IRS-2 revealed two conserved domains at the NH2 terminus, called IH1PH and IH2PTB, which resemble a pleckstrin homology (PH) domain and a phosphotyrosine binding (PTB) domain, respectively. The IH2PTB binds to the phosphorylated NPXY motif (Tyr-960) in the activated insulin receptor, providing a specific mechanism for the interaction between the receptor and IRS-1. Although the IH2PTB of IRS-2 also interacts with the NPEY motif of the insulin receptor, it is not essential for the interaction between the insulin receptor and IRS-2 in the yeast two-hybrid system. IRS-2 contains another interaction domain between residues 591 and 786, which is absent in IRS-1. This IRS-2-specific domain is independent of the IH2PTB and does not require the NPEY motif; however, it requires a functional insulin receptor kinase and the presence of three tyrosine phosphorylation sites in the regulatory loop (Tyr-1146, Tyr-1150, and Tyr-1151). Importantly, this novel domain mediates the association between IRS-2 and insulin receptor lacking the NPXY motif and may provide a mechanism by which the stoichiometry of regulatory loop autophosphorylation enhances IRS-2 phosphorylation.  相似文献   

17.
Bleomycin hydrolase (BH) is a highly conserved cysteine proteinase that deamidates and inactivates the anticancer drug bleomycin. Yeast BH self-assembles to form a homohexameric structure, which resembles a 20 S proteasome and may interact with other proteins. Therefore, we searched for potential human BH (hBH) partners using the yeast two-hybrid system with a HeLa cDNA library and identified the full-length human homologue of yeast ubiquitin-conjugating enzyme 9 (UBC9). Cotransformation assays using hBH deletion mutants revealed that the carboxyl terminus of hBH (amino acids 356-455), which contains two of the three essential catalytic amino acids, was not critical for protein binding in the yeast two-hybrid environment. In vitro translated human UBC9 was precipitated by glutathione S-transferase-hBH fusion protein but not by glutathione S-transferase. Efficient in vitro binding occurred in the absence of the first 24 amino acids of UBC9 and the catalytic Cys93 of UBC9. We confirmed that hBH and UBC9 interacted in vivo by affinity copurification of proteins overexpressed in mammalian cells. Using immunocytochemical analysis, hBH was colocalized with UBC9. Coexpression of hBH and UBC9 in mammalian cells did not markedly alter the bleomycin-hydrolyzing activity of hBH or apparent small ubiquitin-related modifier 1 addition. This is the first reported heteromeric interaction with hBH, and it suggests a role for hBH in intracellular protein processing and degradation.  相似文献   

18.
The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between kinase subdomains VII and VIII, referred to as the activation loop. We show that Thr-446 and Thr-451 in the PKR activation loop are required in vivo and in vitro for high-level kinase activity. Mutation of either residue to Ala impaired translational control by PKR in yeast cells and COS1 cells and led to tumor formation in mice. These mutations also impaired autophosphorylation and eukaryotic initiation factor 2 subunit alpha (eIF2alpha) phosphorylation by PKR in vitro. Whereas the Ala-446 substitution substantially reduced PKR function, the mutant kinase containing Ala-451 was completely inactive. PKR specifically phosphorylated Thr-446 and Thr-451 in synthetic peptides in vitro, and mass spectrometry analysis of PKR phosphopeptides confirmed that Thr-446 is an autophosphorylation site in vivo. Substitution of Glu-490 in subdomain X of PKR partially restored kinase activity when combined with the Ala-451 mutation. This finding suggests that the interaction between subdomain X and the activation loop, described previously for MAP kinase, is a regulatory feature conserved in PKR. We found that the yeast eIF2alpha kinase GCN2 autophosphorylates at Thr-882 and Thr-887, located in the activation loop at exactly the same positions as Thr-446 and Thr-451 in PKR. Thr-887 was more critically required than was Thr-882 for GCN2 kinase activity, paralleling the relative importance of Thr-446 and Thr-451 in PKR. These results indicate striking similarities between GCN2 and PKR in the importance of autophosphorylation and the conserved Thr residues in the activation loop.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号