首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
基于LDA模型的新闻话题的演化   总被引:1,自引:0,他引:1  
新闻话题及演化的研究可以帮助人们快速了解和获取新闻内容。提出了一种挖掘新闻话题随时间变化的方法,通过话题抽取和话题关联实现话题的演化。首先应用LDA(Latent Dirichlet Allocation Model)对不同时间段的文集进行话题的自动抽取,话题数目在不同时间段是可变的;计算相邻时间段中任意两个话题的分布距离实现话题的关联。实验结果证明该方法不但可以描述同一个话题随时间的演化过程,还可以描述话题内容随时间的变化,反映了话题(或子话题)之间多对多的演化关系。  相似文献   

2.
针对目前科学技术文献数量激增、难以从总体上分析把握的现状,提出一种从科技文献中获得研究主题特征词并展现其演化趋势的方法.该方法先利用LDA(Latent Dirichlet Allocation)模型对不同时间片内的话题进行自动抽取,得到不同数量的话题.然后,通过话题过滤剔除意义有限的话题,并借助简单启发式规则选择种子话题.最后,再利用语义相关度将相邻时间片内内容相近的种子话题联系起来,以得到研究主题的演化趋势.实验结果表明,在不对话题生成进行人工干预的前提下,本文方法较真实地描述了研究主题强度和内容随时间的演化趋势,避免了无意义话题对研究主题演化的负面影响.  相似文献   

3.
如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话题检测(NE-BTD)算法。首先,将微博中的主题词对的加速度和负面情感强度变化率作为负面情感突发话题的判定依据;然后,利用突发词对的速度确定负面情感突发话题的窗口范围;最后,使用一种基于吉布斯采样的狄利克雷多项式混合模型(GSDMM)聚类算法得到窗口中负面情感突发话题的主题结构。在实验中将所提出的NE-BTD算法与已有的一种基于情感方法的话题检测(EBM-TD)算法进行对比,结果表明所提出的NE-BTD算法相较EBM-TD算法准确率和召回率至少提高了20%,并且可以至少提前40 min检出负面情感突发话题。  相似文献   

4.
如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话题检测(NE-BTD)算法。首先,将微博中的主题词对的加速度和负面情感强度变化率作为负面情感突发话题的判定依据;然后,利用突发词对的速度确定负面情感突发话题的窗口范围;最后,使用一种基于吉布斯采样的狄利克雷多项式混合模型(GSDMM)聚类算法得到窗口中负面情感突发话题的主题结构。在实验中将所提出的NE-BTD算法与已有的一种基于情感方法的话题检测(EBM-TD)算法进行对比,结果表明所提出的NE-BTD算法相较EBM-TD算法准确率和召回率至少提高了20%,并且可以至少提前40 min检出负面情感突发话题。  相似文献   

5.
针对现有模型无法进行微博主题情感演化分析的问题,提出一种基于主题情感混合模型(TSCM)和情感周期性理论的主题情感演化模型——动态主题情感混合模型(DTSCM)。DTSCM通过捕获不同时间片中微博消息集的主题和情感,追踪不同时间片内主题与情感的变化趋势,获得主题情感演化图,从而实现主题和情感的演化分析。真实微博数据集上的实验结果表明,与当前优秀代表算法JST(Joint Sentiment/Topic)、S-LDA(Sentiment-Latent Dirichlet Allocation)和DPLDA(Dependency Phrases-Latent Dirichlet Allocation)相比,该方法的情感分类准确率分别提高了3.01%、4.33%和8.75%,并且可以获得主题情感演化图。这表明该方法具有更高的情感分类准确率并且可以进行微博主题情感演化分析,为舆情分析等应用提供了较好的帮助。  相似文献   

6.
随着互联网的飞速发展,网络舆情引发的问题也越发突出。尤其是近年来发生的新疆暴恐事件,已成为公众关注的焦点。主题演化是网络舆情分析的重要内容之一,为了把握关于新疆的舆情动态,该文从主题热度变化、内容变化及关键词等多方面进行了研究。该文首先抓取了2013年1月到2015年12月互联网中关于新疆暴恐事件的新闻,并以此作为数据集建立了动态主题模型,实现对新闻的主题演化分析。该模型采用两次非负矩阵分解来生成主题,以层级式狄利克雷过程为对比实验,通过可视化分析与比较,总结出新疆暴恐事件的一些规律。  相似文献   

7.
分层狄利克雷过程是一种贝叶斯无参模型,用以分析海量数据的概率主题模型解决潜在狄利克雷分布无法解决的动态聚类的问题。本文从因子图的角度出发将消息传递算法与吉布斯采样算法结合用以解决贝叶斯无参模型后验概率推断问题,最终将该算法与LDA算法以及HDP算法在混淆度方面进行对比。实验结果表明该算法相比HDP采样算法收敛较快,最终也能收敛到LDA模型最优主题数目下的混淆度。  相似文献   

8.
传统主题演化(ToT)模型通常忽略原始数据中的标签元信息。为此,建立一种基于标签的改进ToT模型。针对传统权重算法忽略词汇在文档集类别间和类别内的分布对权重产生影响的问题,结合文档标题特征,使用改进词频-反重力距算法进行权重分析,以扩展模型的生成过程。在ToT模型的基础上引入原始文档的标签属性,构建改进模型并使用吉布斯采样算法估计其参数。实验结果表明,与ToT模型相比,该模型具有较高的泛化能力。  相似文献   

9.
本文提出了一种通过追踪不同时间片内话题的变化趋势进行话题演化分析的方法,该方法首先利用LDA话题模型抽取科技文献的话题,然后对语义意义不明确的话题进行话题过滤,最后通过计算话题的强度和关联度来分析话题的演化趋势。本文对《计算机学报》论文集进行实验,实验结果表明,在不对话题生成进行人工干预的前提下,本文方法较真实地描述了研究主题强度和内容随时间的演化趋势,且具有良好的效果。  相似文献   

10.
严宇宇  陶煜波  林海 《软件学报》2016,27(5):1114-1126
随着信息技术的快速发展,大量的文本数据产生、被收集和存储.主题模型是文本分析的重要工具之一,被广泛地应用于分析大规模文本集.然而,主题模型通常无法直观而有效地结合用户的领域专业知识对模型结果进行修正.针对这一问题,提出了一个交互式可视分析系统,帮助用户对主题模型进行交互修正.首先对层次狄利克雷过程进行了改进,使其支持单词约束;然后,使用矩阵视图对主题模型进行展示,并使用语义相关的词云布局帮助用户寻找单词约束,用户通过添加单词约束迭代优化主题模型;最后,通过案例分析及用户研究来评价该系统的可用性.  相似文献   

11.
章建  李芳 《中文信息学报》2015,29(2):179-189
自动挖掘大规模语料中的语义信息以及演化关系近年来已受到广大专家学者的关注。话题被认为是文档集合中的潜在语义信息,话题演化用于研究话题内容随时间的变化。该文提出了一种基于上下文的话题演化和话题关系抽取方法。分析发现,一个话题常和某些其他话题共现在多篇文档中,话题间的这种共现信息被称为话题的上下文。上下文信息可以用于计算同时间段话题间的语义关系以及识别不同时间段中具有相同语义的话题。该文对2008年~2012年两会报告以及2007年~2011年NIPS科技文献进行实验,通过人工分析,利用话题的上下文信息,不但可以提高话题演化的正确率,而且还能挖掘话题之间的语义关系,在话题演化的基础上,显示话题关系的演化。  相似文献   

12.
主题模型是挖掘微博潜在主题的重要工具.然而,现有的主题模型多由 Latent Dirichlet Allocation (LDA)派生,它需要用户预先指定主题数目.为了自动挖掘微博主题,作者提出了一个基于分层 Dirichlet 过程(Hierarchical Dirichlet Process,HDP)的非参数贝叶斯模型 MB-HDP.首先,针对微博应用场景,假设消息是不可交换的;接着,利用微博的时间信息、用户兴趣以及话题标签,聚合主题相关的消息以解决微博短文本的数据稀疏问题;然后,扩展Chinese Restaurant Franchise (CRF)对微博数据进行主题建模;最后,设计一个相应的 Markov Chain Monte Carlo (MCMC)采样方法,推导 MB-HDP 模型的分布参数.实验表明,在生成主题质量、内容困惑度和模型复杂度等指标上,MB-HDP 模型明显优于 LDA 和 HDP 两种模型.  相似文献   

13.
吕楠  罗军勇  刘尧  杨慧洁 《计算机工程》2009,35(23):71-72,7
在话题追踪研究领域,话题随着时间不断发展变化。目前的话题追踪方法无法对话题的发展演化进行全局的把握。针对该问题,提出基于相似度计算的话题演化分析方法。该方法采用时间片划分的思想,通过子话题间的相似度计算得到话题演化的具体过程及细节。实验结果表明,该方法能有效地反映话题的演化历程。  相似文献   

14.
针对慕课教学过程中存在的学生能力差异、缺乏针对性等问题,提出一种基于局部社区发现的主题交互模型,对学生能力评估过程进行主题建模,采用局部社区发现算法对学生各方面能力进行合理的等级分类;同时在原有课程实验平台基础上,改进并搭建能够全方位追踪和收集学生行为信息且具有较强交互性的慕课平台.两者结合应用于信号处理系列课程教学实践中,结果表明,主题交互模型对能力评估的准确率明显高于传统考核方式,并且辅以针对性的课堂交流与培养,学生各方面能力均得到不同程度的提高.  相似文献   

15.
话题跟踪中静态和动态话题模型的核捕捉衰减   总被引:1,自引:0,他引:1  
洪宇  仓玉  姚建民  周国栋  朱巧明 《软件学报》2012,23(5):1100-1119
话题跟踪是一项针对新闻话题进行相关信息识别、挖掘和自组织的研究课题,其关键问题之一是如何建立符合话题形态的统计模型.话题形态的研究涉及两个问题,其一是话题的结构特性,其二是话题变形.对比分析了现有词包式、层次树式和链式这3类主流话题模型的形态特征,尤其深入探讨了静态和动态话题模型拟合话题脉络的优势和劣势,并提出一种基于特征重叠比的核捕捉衰减评价策略,专门用于衡量静态和动态话题模型追踪话题发展趋势的能力.在此基础上,分别给出突发式增量式学习方法和时序事件链的更新算法,借以提高动态话题模型的核捕捉性能.实验基于国际标准评测语料TDT4,采用NIST(National Institute of Standards and Technology)提出的最小检测错误权衡系数评测法,并结合所提出的核捕捉衰减评价方法,对各类主要话题模型进行测试.实验结果显示,结构化的动态话题模型具有最佳的跟踪性能,且突发式增量式学习和时序事件链的更新算法分别给予动态话题模型0.4%和3.3%的性能改进.  相似文献   

16.
话题跟踪是一项针对新闻话题进行相关信息识别、挖掘和自组织的研究课题,其关键问题之一是如何建立符合话题形态的统计模型.话题形态的研究涉及两个问题,其一是话题的结构特性,其二是话题变形.对比分析了现有词包式、层次树式和链式这3类主流话题模型的形态特征,尤其深入探讨了静态和动态话题模型拟合话题脉络的优势和劣势,并提出一种基于特征重叠比的核捕捉衰减评价策略,专门用于衡量静态和动态话题模型追踪话题发展趋势的能力.在此基础上,分别给出突发式增量式学习方法和时序事件链的更新算法,借以提高动态话题模型的核捕捉性能.实验基于国际标准评测语料TDT4,采用NIST(National Institute of Standards and Technology)提出的最小检测错误权衡系数评测法,并结合所提出的核捕捉衰减评价方法,对各类主要话题模型进行测试.实验结果显示,结构化的动态话题模型具有最佳的跟踪性能,且突发式增量式学习和时序事件链的更新算法分别给予动态话题模型0.4%和3.3%的性能改进.  相似文献   

17.
针对短文本中固有的文本内容稀疏和上下文信息匮乏等问题,在BTM的基础上提出一种融合词向量特征的双词主题模型LF-BTM。该模型引入潜在特征模型以利用丰富的词向量信息弥补内容稀疏,在改进的生成过程中每个双词的词汇的生成受到主题-词汇多项分布和潜在特征模型的共同影响。模型中的参数通过吉布斯采样算法进行估计。在真实的短文本数据集上的实验结果表明,该模型能结合外部通用的大规模语料库上已训练好的词向量挖掘出语义一致性显著提升的主题。  相似文献   

18.
蒋竞  吕江枫  张莉 《软件学报》2020,31(4):1143-1161
软件问答社区是软件开发者通过问答方式进行技术交流的网络平台.近年来,软件问答社区积累了大量用户讨论的技术问答内容.一些研究者对Stack Overflow等英文问答社区进行主题分析研究,但是缺少对于中文软件问答社区的分析.通过对中文软件回答社区开展主题分析研究,不仅可以指导开发者更好地了解技术动向,而且可以帮助管理者改进社区、吸引更多用户参与."开源中国"是中国最大的技术社区之一.对"开源中国"开展了开发者问题主题分析研究.收集"开源中国"的92 383个开发者问题,采用隐狄利克雷分配模型的主题分析方法,分析开发者问题的主题分布、热度趋势、回答情况和关键技术热度等.发现:(1)开发者讨论的技术主题分为前端开发、后端开发、数据库、操作系统、通用技术和其他6个类别.其中,前端开发讨论占比最大.(2)后端开发下的主题中用户的关注重点从传统的项目部署、服务器配置转移到较新的分布式系统等主题.(3)数据展示主题的零回答问题比例最高,数据类型主题下的零回答问题比例最低.(4)在技术学习主题下,用户对于Java的讨论明显多于对Python的讨论.  相似文献   

19.
基于LDA话题演化研究方法综述   总被引:5,自引:1,他引:5  
现实生活中不断有新话题的产生和旧话题的衰减,同时话题的内容也会随着时间发生变化。自动探测话题随时间的演化越来越受到人们的关注。Latent Dirichlet Allocation模型是近年提出的概率话题模型,已经在话题演化领域得到较为广泛的应用。该文提出了话题演化的两个方面 内容演化和强度演化,总结了基于LDA话题模型的话题演化方法,根据引入时间的不同方式将目前的研究方法分为三类 将时间信息结合到LDA模型、对文本集合后离散和先离散方法。在详细叙述这三种方法的基础上,针对时间粒度、是否在线等多个特征进行了对比,并且简要描述了目前广泛应用的话题演化评测方法。文章最后分析了目前存在的挑战,并且对该研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号