共查询到19条相似文献,搜索用时 57 毫秒
1.
基于LDA模型的新闻话题的演化 总被引:1,自引:0,他引:1
新闻话题及演化的研究可以帮助人们快速了解和获取新闻内容。提出了一种挖掘新闻话题随时间变化的方法,通过话题抽取和话题关联实现话题的演化。首先应用LDA(Latent Dirichlet Allocation Model)对不同时间段的文集进行话题的自动抽取,话题数目在不同时间段是可变的;计算相邻时间段中任意两个话题的分布距离实现话题的关联。实验结果证明该方法不但可以描述同一个话题随时间的演化过程,还可以描述话题内容随时间的变化,反映了话题(或子话题)之间多对多的演化关系。 相似文献
2.
针对目前科学技术文献数量激增、难以从总体上分析把握的现状,提出一种从科技文献中获得研究主题特征词并展现其演化趋势的方法.该方法先利用LDA(Latent Dirichlet Allocation)模型对不同时间片内的话题进行自动抽取,得到不同数量的话题.然后,通过话题过滤剔除意义有限的话题,并借助简单启发式规则选择种子话题.最后,再利用语义相关度将相邻时间片内内容相近的种子话题联系起来,以得到研究主题的演化趋势.实验结果表明,在不对话题生成进行人工干预的前提下,本文方法较真实地描述了研究主题强度和内容随时间的演化趋势,避免了无意义话题对研究主题演化的负面影响. 相似文献
3.
如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话题检测(NE-BTD)算法。首先,将微博中的主题词对的加速度和负面情感强度变化率作为负面情感突发话题的判定依据;然后,利用突发词对的速度确定负面情感突发话题的窗口范围;最后,使用一种基于吉布斯采样的狄利克雷多项式混合模型(GSDMM)聚类算法得到窗口中负面情感突发话题的主题结构。在实验中将所提出的NE-BTD算法与已有的一种基于情感方法的话题检测(EBM-TD)算法进行对比,结果表明所提出的NE-BTD算法相较EBM-TD算法准确率和召回率至少提高了20%,并且可以至少提前40 min检出负面情感突发话题。 相似文献
4.
如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话题检测(NE-BTD)算法。首先,将微博中的主题词对的加速度和负面情感强度变化率作为负面情感突发话题的判定依据;然后,利用突发词对的速度确定负面情感突发话题的窗口范围;最后,使用一种基于吉布斯采样的狄利克雷多项式混合模型(GSDMM)聚类算法得到窗口中负面情感突发话题的主题结构。在实验中将所提出的NE-BTD算法与已有的一种基于情感方法的话题检测(EBM-TD)算法进行对比,结果表明所提出的NE-BTD算法相较EBM-TD算法准确率和召回率至少提高了20%,并且可以至少提前40 min检出负面情感突发话题。 相似文献
5.
针对现有模型无法进行微博主题情感演化分析的问题,提出一种基于主题情感混合模型(TSCM)和情感周期性理论的主题情感演化模型——动态主题情感混合模型(DTSCM)。DTSCM通过捕获不同时间片中微博消息集的主题和情感,追踪不同时间片内主题与情感的变化趋势,获得主题情感演化图,从而实现主题和情感的演化分析。真实微博数据集上的实验结果表明,与当前优秀代表算法JST(Joint Sentiment/Topic)、S-LDA(Sentiment-Latent Dirichlet Allocation)和DPLDA(Dependency Phrases-Latent Dirichlet Allocation)相比,该方法的情感分类准确率分别提高了3.01%、4.33%和8.75%,并且可以获得主题情感演化图。这表明该方法具有更高的情感分类准确率并且可以进行微博主题情感演化分析,为舆情分析等应用提供了较好的帮助。 相似文献
6.
随着互联网的飞速发展,网络舆情引发的问题也越发突出。尤其是近年来发生的新疆暴恐事件,已成为公众关注的焦点。主题演化是网络舆情分析的重要内容之一,为了把握关于新疆的舆情动态,该文从主题热度变化、内容变化及关键词等多方面进行了研究。该文首先抓取了2013年1月到2015年12月互联网中关于新疆暴恐事件的新闻,并以此作为数据集建立了动态主题模型,实现对新闻的主题演化分析。该模型采用两次非负矩阵分解来生成主题,以层级式狄利克雷过程为对比实验,通过可视化分析与比较,总结出新疆暴恐事件的一些规律。 相似文献
7.
8.
传统主题演化(ToT)模型通常忽略原始数据中的标签元信息。为此,建立一种基于标签的改进ToT模型。针对传统权重算法忽略词汇在文档集类别间和类别内的分布对权重产生影响的问题,结合文档标题特征,使用改进词频-反重力距算法进行权重分析,以扩展模型的生成过程。在ToT模型的基础上引入原始文档的标签属性,构建改进模型并使用吉布斯采样算法估计其参数。实验结果表明,与ToT模型相比,该模型具有较高的泛化能力。 相似文献
9.
袁胜文 《计算机光盘软件与应用》2014,(21):21-22
本文提出了一种通过追踪不同时间片内话题的变化趋势进行话题演化分析的方法,该方法首先利用LDA话题模型抽取科技文献的话题,然后对语义意义不明确的话题进行话题过滤,最后通过计算话题的强度和关联度来分析话题的演化趋势。本文对《计算机学报》论文集进行实验,实验结果表明,在不对话题生成进行人工干预的前提下,本文方法较真实地描述了研究主题强度和内容随时间的演化趋势,且具有良好的效果。 相似文献
10.
随着信息技术的快速发展,大量的文本数据产生、被收集和存储.主题模型是文本分析的重要工具之一,被广泛地应用于分析大规模文本集.然而,主题模型通常无法直观而有效地结合用户的领域专业知识对模型结果进行修正.针对这一问题,提出了一个交互式可视分析系统,帮助用户对主题模型进行交互修正.首先对层次狄利克雷过程进行了改进,使其支持单词约束;然后,使用矩阵视图对主题模型进行展示,并使用语义相关的词云布局帮助用户寻找单词约束,用户通过添加单词约束迭代优化主题模型;最后,通过案例分析及用户研究来评价该系统的可用性. 相似文献
11.
自动挖掘大规模语料中的语义信息以及演化关系近年来已受到广大专家学者的关注。话题被认为是文档集合中的潜在语义信息,话题演化用于研究话题内容随时间的变化。该文提出了一种基于上下文的话题演化和话题关系抽取方法。分析发现,一个话题常和某些其他话题共现在多篇文档中,话题间的这种共现信息被称为话题的上下文。上下文信息可以用于计算同时间段话题间的语义关系以及识别不同时间段中具有相同语义的话题。该文对2008年~2012年两会报告以及2007年~2011年NIPS科技文献进行实验,通过人工分析,利用话题的上下文信息,不但可以提高话题演化的正确率,而且还能挖掘话题之间的语义关系,在话题演化的基础上,显示话题关系的演化。 相似文献
12.
主题模型是挖掘微博潜在主题的重要工具.然而,现有的主题模型多由 Latent Dirichlet Allocation (LDA)派生,它需要用户预先指定主题数目.为了自动挖掘微博主题,作者提出了一个基于分层 Dirichlet 过程(Hierarchical Dirichlet Process,HDP)的非参数贝叶斯模型 MB-HDP.首先,针对微博应用场景,假设消息是不可交换的;接着,利用微博的时间信息、用户兴趣以及话题标签,聚合主题相关的消息以解决微博短文本的数据稀疏问题;然后,扩展Chinese Restaurant Franchise (CRF)对微博数据进行主题建模;最后,设计一个相应的 Markov Chain Monte Carlo (MCMC)采样方法,推导 MB-HDP 模型的分布参数.实验表明,在生成主题质量、内容困惑度和模型复杂度等指标上,MB-HDP 模型明显优于 LDA 和 HDP 两种模型. 相似文献
13.
14.
话题跟踪是一项针对新闻话题进行相关信息识别、挖掘和自组织的研究课题,其关键问题之一是如何建立符合话题形态的统计模型.话题形态的研究涉及两个问题,其一是话题的结构特性,其二是话题变形.对比分析了现有词包式、层次树式和链式这3类主流话题模型的形态特征,尤其深入探讨了静态和动态话题模型拟合话题脉络的优势和劣势,并提出一种基于特征重叠比的核捕捉衰减评价策略,专门用于衡量静态和动态话题模型追踪话题发展趋势的能力.在此基础上,分别给出突发式增量式学习方法和时序事件链的更新算法,借以提高动态话题模型的核捕捉性能.实验基于国际标准评测语料TDT4,采用NIST(National Institute of Standards and Technology)提出的最小检测错误权衡系数评测法,并结合所提出的核捕捉衰减评价方法,对各类主要话题模型进行测试.实验结果显示,结构化的动态话题模型具有最佳的跟踪性能,且突发式增量式学习和时序事件链的更新算法分别给予动态话题模型0.4%和3.3%的性能改进. 相似文献
15.
16.
自动挖掘科技文献话题,总结发展趋势及最新研究动态,有助于科技工作者的研究。该文提出一种话题发现和趋势分析的方法,该方法首先利用LDA话题模型抽取科技文献的话题,然后计算话题的强度和影响力,最后针对热门和冷门话题以及影响力高和影响力低的话题,进行了趋势分析。该文提出的话题强度和影响力计算方法,可以针对任何文集。对ACL 论文集的实验,显示了计算语言学领域过去的发展状况。和其他方法的对比实验,也验证了该文提出的话题强度和影响力的计算方法是正确和可行的。 相似文献
17.
We propose a novel probabilistic method, based on latent variable models, for unsupervised topographic visualisation of dynamically evolving, coherent textual information. This can be seen as a complementary tool for topic detection and tracking applications. This is achieved by the exploitation of the a priori domain knowledge available, that there are relatively homogeneous temporal segments in the data stream. In a different manner from topographical techniques previously utilized for static text collections, the topography is an outcome of the coherence in time of the data stream in the proposed model. Simulation results on both toy-data settings and an actual application on Internet chat line discussion analysis is presented by way of demonstration. 相似文献
18.
Gebregziabher M Shotwell MS Charles JM Nicholas JS 《Computational statistics & data analysis》2012,56(1):114-125
We evaluate the performance of the Dirichlet process mixture (DPM) and the latent class model (LCM) in identifying autism phenotype subgroups based on categorical autism spectrum disorder (ASD) diagnostic features from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision. A simulation study is designed to mimic the diagnostic features in the ASD dataset in order to evaluate the LCM and DPM methods in this context. Likelihood based information criteria and DPM partitioning are used to identify the best fitting models. The Rand statistic is used to compare the performance of the methods in recovering simulated phenotype subgroups. Our results indicate excellent recovery of the simulated subgroup structure for both methods. The LCM performs slightly better than DPM when the correct number of latent subgroups is selected a priori. The DPM method utilizes a maximum a posteriori (MAP) criterion to estimate the number of classes, and yielded results in fair agreement with the LCM method. Comparison of model fit indices in identifying the best fitting LCM showed that adjusted Bayesian information criteria (ABIC) picks the correct number of classes over 90% of the time. Thus, when diagnostic features are categorical and there is some prior information regarding the number of latent classes, LCM in conjunction with ABIC is preferred. 相似文献