首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为研究焊接圆钢管的纵向残余应力分布规律,采用分割法对9个不同截面尺寸、不同钢材强度、不同加工工艺的试件进行了测量。基于测量数据,得到了不同尺寸试件的全截面残余应力分布和拉、压残余应力的大小,研究了圆钢管径厚比、钢材强度、热镀锌处理对残余应力的影响以及测量过程中人为误差对测量结果的影响。试验结果表明,高强度钢材焊接圆钢管的残余应力分布较均匀,热镀锌处理降低了圆钢管的最大残余拉应力;采用分割法测量时人为操作产生的误差很小。最后,提出了完整的适用于焊接圆钢管截面的残余应力分布模型,并进行有限元模拟,与试验结果吻合良好,为进一步对焊接圆钢管整体稳定进行有限元分析提供参考资料。  相似文献   

2.
基于ANSYS软件的焊接工字型截面梁残余应力的有限元分析   总被引:5,自引:0,他引:5  
陈丽敏  陈思作 《钢结构》2003,18(2):45-47,52
根据热弹塑性应力理论、有限元理论 ,用大型有限元软件ANSYS对焊接工字型截面梁进行残余应力分析 ,分析结果表明 ,焊接残余压应力的分布与截面几何参数有关 ,为用有限元分析焊接工字型截面梁残余应力提供了一种方法。  相似文献   

3.
Q460高强钢焊接箱形截面残余应力研究   总被引:1,自引:0,他引:1  
为研究国产Q460高强钢焊接箱形截面的残余应力分布规律,采用分割法对6个不同截面尺寸的试件进行了试验研究。基于测量数据,得到了不同试件全截面残余应力分布,研究了板件宽厚比、板件厚度等几何尺寸对残余应力的影响以及测量过程中人为产生的误差、截面板件间残余应力的相互影响及自平衡性等。试验结果表明:残余压应力与截面尺寸直接相关,残余拉应力与截面尺寸关系不大;采用分割法测量时人为操作产生的误差很小;截面4块板件的残余应力能够分别满足自平衡条件。提出了适用于Q460高强钢焊接箱形截面的残余应力分布模型和计算式,该模型能够准确反映截面尺寸的影响,且与试验结果吻合良好。  相似文献   

4.
焊接残余应力导致不锈钢梁截面纤维过早达到屈服,并严重降低不锈钢梁的抗弯刚度。为了研究残余应力对焊接工字形不锈钢梁侧扭屈曲的影响,根据目前被广泛采纳的不锈钢工字形截面残余应力分布模型,采用有限元方法,对残余应力分布模型的主要因素进行参数化分析,研究这些因素对不锈钢梁侧扭屈曲的影响,使对焊接工字形不锈钢梁的整体稳定性能的研究更加完善。结果表明:翼缘残余压应力峰值对不锈钢梁侧扭屈曲的影响最为显著。  相似文献   

5.
为研究残余应力对钢梁内嵌式的预应力简支组合梁在火灾效应下的受力性能的影响,通过ABAQUS软件建立钢梁内嵌式的预应力简支钢-混组合梁几何非线性和材料非线性的有限元模型,利用热力-耦合法计算组合梁在高温下的结构响应行为。通过对梁的截面温度、整体挠度和跨中挠度、跨中截面应力分布、拉索应力和塑性变形、梁的整体曲率和跨中曲率等特性在高温下的结构响应进行考察,探究工程应用中常见初始残余应力对组合梁的影响机理。结果表明:残余应力主要是通过影响钢梁的截面模量,进而对钢梁的截面抗弯刚度产生影响,在升温后期或当钢梁开始进入塑性状态时,残余应力的影响逐渐减小。残余应力在钢梁腹板上的分布能较为明显的影响组合梁的承载能力,分布形式不同影响效果也不同。残余应力主要影响了组合梁中钢梁的截面刚度,进而也影响了组合梁的挠度幅度、曲率分布、中和轴高度以及拉索内力变化。  相似文献   

6.
弧形构件经历冷弯成形获得设计所需的曲线形状,冷弯成形工艺所产生的残余应力以及材性的改变受到普遍关注。采用有限元分析软件ANSYS研究弧形圆管的典型冷弯成形工艺,实现冷弯成形过程的有限元模拟,并研究成形荷载与构件塑性变形和回弹量之间的关系,分析成形后残余应力及应变的分布规律,以及校核成形后构件的椭圆度。分析结果表明:弧形圆管的冷弯回弹对构件成形精度影响明显;冷弯成形会导致构件内部产生明显的残余应力与应变,且残余应力水平很高;冷弯成形引起圆管椭圆度变化较小。  相似文献   

7.
为研究钢梁残余应力对预应力连续组合梁抗火性能的影响,建立了预应力连续组合梁在高温下非线性升温过程受力行为的有限元模型。通过考察梁的破坏形式、跨中挠度、预应力拉索张力、截面弯矩以及梁的曲率等关键参数随温度的变化,得到不同残余应力模式对组合梁抗火性能的影响机理。分析结果表明:残余应力的分布并不总是对预应力钢-混凝土组合梁的高温性能产生不利影响,腹板具有初始残余拉应力分布模式的预应力钢-混凝土组合梁高温下的挠度相对最小;残余应力主要通过影响截面正应力分布来影响钢梁的截面刚度;在临界状态时,残余应力对组合梁截面刚度的影响不明显;不同残余应力模式对高温下预应力钢-混凝土组合梁的截面抗弯刚度影响不同;当预应力钢-混凝土组合梁的初始残余应力模式以腹板全截面拉应力为主时,预应力钢-混凝土组合梁跨中截面抗弯刚度最大;当残余应力对组合梁跨中截面抗弯刚度有利时,梁跨中截面处中和轴位置比无残余应力影响时较高。  相似文献   

8.
采用有限元参数分析,比较了3种残余应力分布形式、6种箱形截面、6种钢材屈服强度(235~960 MPa)条件下残余应力对焊接箱形轴压柱整体稳定性能的影响。结果表明:残余应力分布形式对构件稳定性能影响较小。按矩形残余应力分布计算可知:当板厚不大于20 mm且宽厚比不大于20时,相同残余应力水平下,截面尺寸对构件稳定性能影响较小;不同屈服强度下残余应力对构件稳定性能有一定影响,且稳定性能随钢材强度增大而提高;截面中拉压残余应力水平对构件稳定性能有较大影响。  相似文献   

9.
为了研究单轴对称焊接工字形截面残余应力分布规律,采用盲孔法对15个单轴对称工字形截面试件进行了试验研究,得到了不同试件全截面纵向残余应力分布,研究了腹板高厚比、翼缘宽厚比、翼缘宽度、施焊顺序等对残余应力的影响。试验结果表明:残余压应力数值与截面尺寸直接相关,残余拉应力数值受截面尺寸影响较小;腹板中靠近宽翼缘一侧的残余压应力峰值大于靠近窄翼缘一侧的压应力峰值;翼缘宽度增大时,分布于所在翼缘和腹板的残余压应力减小;施焊顺序对翼缘上的残余应力及腹板上的残余拉应力峰值有一定影响,而腹板上的残余压应力没有明显变化。基于试验结果,提出了适用于单轴对称焊接工字形截面的残余应力分布模型,该模型能够较准确反映各种因素的影响。  相似文献   

10.
为了研究单轴对称焊接工字形截面残余应力分布规律,采用盲孔法对15个单轴对称工字形截面试件进行了试验研究,得到了不同试件全截面纵向残余应力分布,研究了腹板高厚比、翼缘宽厚比、翼缘宽度、施焊顺序等对残余应力的影响。试验结果表明:残余压应力数值与截面尺寸直接相关,残余拉应力数值受截面尺寸影响较小;腹板中靠近宽翼缘一侧的残余压应力峰值大于靠近窄翼缘一侧的压应力峰值;翼缘宽度增大时,分布于所在翼缘和腹板的残余压应力减小;施焊顺序对翼缘上的残余应力及腹板上的残余拉应力峰值有一定影响,而腹板上的残余压应力没有明显变化。基于试验结果,提出了适用于单轴对称焊接工字形截面的残余应力分布模型,该模型能够较准确反映各种因素的影响。  相似文献   

11.
Residual stresses in straight hot rolled wide flange sections are well documented and have been investigated in the recent past. However, to the knowledge of the authors, residual stress measurements have not been published on roller bent wide flange sections. Straight sections are curved into roller bent ones at ambient temperatures by means of the roller bending process. Since roller bent sections underwent severe plastic deformation during the forming process, the well-known residual stress patterns from hot rolling may not be appropriate for the roller bent steel. Roller bent sections can be applied in halls, roofings and bridges, thereby acting as structural arches and it is important that a realistic residual stress pattern is implemented when assessing their load carrying capacity. An experimental program has been carried out to investigate the residual stresses in roller bent wide flange sections bent about the strong axis. Residual stresses were measured with the sectioning method. The experimental technique was investigated with respect to possible temperature influence and repeatability of the measurements. Experimental values revealed that the residual stress pattern and magnitude in roller bent sections is different when compared to their straight counterparts.  相似文献   

12.
A thermo-mechanical finite element analysis model is developed to predict residual stress patterns in hot-rolled sections. The model is first verified against experimental measurements for residual stresses reported for I-sections reported in the literature. The method is then used to predict residual stresses in elliptical hollow sections. A sensitivity analysis is then conducted to assess the influence of various input parameters of the model on the predicted residual stress patterns. The effects of cross-section geometric parameters on the residual stress distribution are then investigated.A series of column curves is generated providing the compressive capacity of a column as a function of slenderness. The column curves are generated based on a) elasto-plastic geometrically nonlinear analyses, b) including the effect of residual stresses as predicted from thermo-mechanical analyses and c) incorporating initial geometric out-of straightness according to the fundamental buckling mode as predicted from an elastic buckling eigen value analysis. Generated column curves are then compared to those in current design codes. A best fit for the numeric results obtained is conducted to cast them in a format similar to that in the current codes.  相似文献   

13.
《钢结构》2012,(6):82
对壁厚超过6mm的厚壁矩形中空截面冷弯型钢进行试验研究。矩形中空截面采用两种成型方法:直接法(直接形成矩形)和间接法(先形成圆形,再转换成矩形)。采用两种方法(钻孔法和X射线衍射法)计算纵向残余应力的大小和分布。研究了沿截面周长方向和厚度方向的纵向残余应力的大小和分布。结果显示,沿厚度方向的纵向残余应力在外表面为拉力,内表面为压力,表现出类似于正弦曲线的非线性特性。此外,讨论了厚壁矩形中空截面冷弯型钢的成型过程和截面几何尺寸对残余应力的大小和分布的影响。最后,针对厚壁矩形中空截面冷弯型钢两种不同成型过程,分别给出相应的残余应力分布情况。  相似文献   

14.
The manufacturing process of cold-formed thin-walled steel members induces cold work which can be characterized by the co-existent residual stresses and equivalent plastic strains and has a significant effect on their structural behaviour and strength. The present paper and the companion paper are concerned with the prediction of residual stresses and co-existent equivalent plastic strains in stainless steel sections formed by the press-braking method. This manufacturing process consists of the following two distinct stages: (i) coiling and uncoiling of the sheets, and (ii) press-braking operations. This paper first presents an analytical solution for the residual stresses and the co-existent equivalent plastic strains that arise from the second stage while a corresponding analytical solution for the first stage is presented in the companion paper. In both solutions, plane strain pure bending is assumed and the effect of material anisotropy is taken into account. On the basis of these two analytical solutions, an analytical model is presented to predict residual stresses and equivalent plastic strains in press-braked stainless sections. The predictions of the analytical model are shown to be in close agreement with results from a finite element-based method, demonstrating the validity and accuracy of the analytical model. The analytical model provides a much simpler method for the accurate prediction of residual stresses and equivalent plastic strains in different parts of a press-braked stainless steel section than a finite element-based method.  相似文献   

15.
This paper presents the experimental study on cold-formed thick-walled square hollow sections with thickness greater than 6 mm. Square hollow sections are formed using two different forming processes of a “direct square” way and an “indirect way from circular to square”. Two test methods of the hole-drilling method and the X-ray diffraction method are used to measure the magnitudes and distributions of longitudinal residual stresses. The magnitudes and distributions of longitudinal residual stresses along the section perimeter as well as along the section thickness are obtained in this study. It is shown that the longitudinal residual stresses are in tension at outer surface and in compression at inner surface, and present nonlinear distributions, which seems like “sine” curve along the section thickness. Furthermore, the effects of forming process and cross-section geometry on the magnitudes and distributions of longitudinal residual stresses for cold-formed thick-walled square hollow sections are discussed. At last, two distribution patterns have been proposed for the square hollow sections formed using two different forming processes, respectively.  相似文献   

16.
Proposed residual stress model for roller bent steel wide flange sections   总被引:1,自引:0,他引:1  
The manufacturing process of structural wide flange steel sections introduces residual stresses in the material. These stresses due to hot-rolling or welding influence the inelastic buckling response of structural steel members and need to be taken into account in the design. Based on experimental data standardized residual stress models have been proposed for inclusion in inelastic buckling analyses. By incorporating these residual stress models their effect on the resistance of beams and columns can be obtained. Residual stress models for roller bent steel sections are currently not available. Roller bent wide flange sections are manufactured by curving straight members at ambient temperature. This manufacturing technique, which is also known as roller bending, stresses the material beyond its yield stress, thereby overriding the initial residual stresses prior to bending and generating an entirely new pattern. This paper proposes a residual stress model for roller bent wide flange sections, based on earlier conducted numerical investigations which were validated by experimental research performed at Eindhoven University of Technology. The proposed residual stress model can serve as an initial state of a roller bent steel section in fully non-linear finite element analyses to accurately predict its influence on the inelastic buckling response.  相似文献   

17.
Curved structural wide flange steel sections are frequently used in buildings or bridges. These sections are usually curved at ambient temperatures with a roller bending machine. This process alters the residual stress distribution, which may affect the elasto-plastic buckling behavior of arches. This paper presents a numerical modeling technique to estimate residual stresses in curved wide flange sections manufactured by the pyramid roller bending process. The technique incorporates material non-linearity, geometrical non-linearity and contact modeling. Numerically obtained residual stresses are compared to experimental results and good agreement was found for the top flange. Only moderate agreement was observed for the web but very good coherence was realized for the bottom flange. It is concluded that a finite element analysis can be used to estimate residual stresses in roller bent wide flange sections.  相似文献   

18.
The manufacturing process of cold-formed thin-walled steel members induces cold work which can be characterized by the co-existent residual stresses and equivalent plastic strains and has a significant effect on their structural behaviour and strength. The present paper and the companion paper are concerned with the prediction of residual stresses and co-existent equivalent plastic strains in stainless steel sections formed by the press-braking method. This manufacturing process consists of the following two distinct stages: (i) coiling and uncoiling of the sheets, and (ii) press-braking operations. This paper presents an analytical solution for the residual stresses and co-existent equivalent plastic strains that arise from the first stage. In the analytical solution, the coiling–uncoiling stage is modelled as an inelastic plane strain pure bending problem; the stainless steel sheets are assumed to obey Hill’s anisotropic yield criterion with isotropic hardening to account for the effects of material anisotropy and nonlinear stress–strain behaviour. The accuracy of the solution is demonstrated by comparing its predictions with those obtained from a finite element analysis. The present analytical solution and the corresponding analytical solution for press-braking operations presented in the companion paper form an integrated analytical model for predicting residual stresses and equivalent plastic strains in press-braked stainless steel sections.  相似文献   

19.
Prediction of residual stresses and strains in cold-formed steel members   总被引:6,自引:0,他引:6  
The objective of this paper is to provide an unambiguous mechanics-based prediction method for determination of initial residual stresses and effective plastic strains in cold-formed steel members. The method is founded on basic physical assumptions regarding plastic deformations and common industry practice in manufacturing. Sheet steel coiling and cross-section roll-forming are the manufacturing processes considered. The structural mechanics employed in the method are defined for each manufacturing stage and the end result is a series of closed-form algebraic equations for the prediction of residual stresses and strains. Prediction validity is evaluated with measured residual strains from existing experiments, and good agreement is shown. The primary motivation for the development of this method is to define the initial state of a cold-formed steel member for use in a subsequent nonlinear finite element analysis. The work also has impact on our present understanding of cold-work of forming effects in cold-formed steel members.  相似文献   

20.
Residual stresses in cold-rolled stainless steel hollow sections   总被引:1,自引:0,他引:1  
Stainless steel exhibits a pronounced response to cold-work and heat input. As a result, the behaviour of structural stainless steel sections, as influenced by strength, ductility and residual stress presence, is sensitive to the precise means by which the sections are produced. This paper explores the presence and influence of residual stresses in cold-rolled stainless steel box sections using experimental and numerical techniques. In previous studies, residual stress magnitudes have been inferred from surface strain measurements and an assumed through-thickness stress distribution. In the present study, through-thickness residual stresses in cold-rolled stainless steel box sections have been measured directly by means of X-ray diffraction and their effect on structural behaviour has been carefully assessed through detailed non-linear numerical modelling. Geometric imperfections, flat and corner material properties and the average compressive response of stainless steel box sections were also examined experimentally and the results have been fully reported. From the X-ray diffraction measurements, it was concluded that the influence of through-thickness (bending) residual stresses in cold-rolled stainless steel box sections could be effectively represented by a rectangular stress block distribution. The developed ABAQUS numerical models included features such as non-linear material stress-strain characteristics, initial geometric imperfections, residual stresses (membrane and bending) and enhanced strength corner properties. The residual stresses, together with the corresponding plastic strains, were included in the FE models by means of the SIGINI and HARDINI Fortran subroutines. Of the two residual stress components, the bending residual stresses were found to be larger in magnitude and of greater (often positive) influence on the structural behaviour of thin-walled cold-formed stainless steel sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号