首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
河谷地形是影响混凝土面板堆石坝应力变形的重要因素之一。为研究狭窄河谷上200 m级高面板堆石坝应力变形特性,本文结合223.5 m高的猴子岩面板堆石坝,采用邓肯-张E-B模型三维非线性有限元,对该面板堆石坝竣工期和蓄水期进行应力变形分析。结果表明:竣工期和蓄水期坝体最大沉降所占坝高之比较修建在宽河谷上的高面板堆石坝小;坝体大主应力明显小于堆石体自重应力,存在明显的应力拱效应;蓄水期面板以向河谷中部挠曲变形为主,变形具有明显的空间效应;面板在左、右两岸和底部有一定的拉应力,在河谷中部存在较大范围的高压应力区。狭窄河谷上修建的高面板堆石坝除了关注面板拉应力外,应重视蓄水和后期运行过程中河谷中部高压应力区面板可能发生的局部挤压破坏。研究结果可为类似狭窄河谷上高面板堆石坝的设计提供参考。  相似文献   

2.
彭成山  陈曦  黄露剑 《人民黄河》2013,35(6):107-109
混凝土面板堆石坝最重要的组成部分是堆石体,堆石体的应力变形程度是影响工程稳定和安全的关键。对某水库面板堆石坝采用大型计算软件ADINA进行三维非线性有限元分析,模拟计算了竣工期坝体的3个典型断面的应力变形情况。结果表明,坝体的应力、位移分布规律较好,变形值都在允许范围内;断层只对坝基的应力分布形态有影响,对坝体的应力、变形影响较小。  相似文献   

3.
目前堆石坝有限元应力应变计算大多采用固支模拟岸坡处堆石与岸坡的连接。对于狭窄河谷陡边坡地区面板堆石坝,堆石可能沿岸坡面将发生滑移,此时采用固支模拟与实际情况不符。为研究狭窄河谷陡边坡对面板堆石坝应力变形影响,选用无厚度的goodman单元模拟狭窄河谷中陡边坡边界与堆石的接触面,并与将岸坡处堆石的结点按固支模拟的常规方法的成果相比较。计算结果表明:2种情况下堆石体变形及应力分布规律大体一致,但是采用固支处理时变形值相对较小;采用固支时,河床段面板底部拉应力偏大,与实际情况不符,考虑摩擦接触后,堆石能够沿着岸坡滑动,该部位应力较为均匀,拱效应相对降低,蓄水后岸坡处面板在受静水压力作用,有较小的压应力,符合实际情况。  相似文献   

4.
基于三维有限元非线性方法,考虑某高面板堆石坝面板分期施工浇筑的特点,建立精细模拟面板特性的子模型,用有厚度的接触面单元模拟坝体与面板的接触面,设置相应的连接单元模拟面板缝的相互作用,分析了该面板堆石坝在施工期和蓄水期坝体和面板的应力变形,并与类似坝高的面板堆石坝的计算或监测结果进行比较。结果表明:在施工期和蓄水期坝体的最大沉降值约为坝高的1%,位于次堆石区;面板应力以压应力为主,拉应力主要集中在面板与周边山体连接处;周边缝的最大错动剪切变形、最大张拉变形及最大沉降剪切变形均未超过30 mm。  相似文献   

5.
针对应用更为广泛的中厚覆盖层上中低面板堆石坝变形特性进行了有限元分析,研究了面板堆石坝竣工期及蓄水期的堆石体及面板的变形特性,计算结果表明:相比于竣工期,蓄水期坝体最大竖向位移,向下游的水平位移,大坝大、小主应力及应力水平均有所增加,其中以大坝水平位移增加最为明显,约增加1倍左右,竖向位移增加幅度约为8%,大、小主应力增加10%~20%,应力水平增加约50%。  相似文献   

6.
面板堆石坝面板裂缝问题一直是制约其发展的一个关键技术问题。相对于竣工期混凝土干缩和温度应力造成的早期细小裂缝而言,蓄水期坝体结构受力变形是造成面板裂缝的控制因素。根据蓄水期面板受力情况,将面板看作弹性地基(堆石体)上的梁,根据鲍幸涅斯克弹性理论求得堆石体对面板的法向抗力和切向抗力,由面板微元受力模型,应用材料力学推导出面板顺坡向应力和轴向挤压应力的表达式。算例表明,公式可以用于估算面板顺坡向最大应力和轴向最大挤压应力。最后分析了表达式中有关参数的变化对面板应力的影响。此研究对控制面板应力和变形、防止面板裂缝具有一定的参考价值。  相似文献   

7.
针对重庆市金佛山混凝土面板堆石坝初步设计方案,通过静力平面应力变形分析计算,分析了坝体在竣工期、蓄水期的应力变形分布规律,重点研究了主堆石孔隙率、次堆石材料对面板和趾板的应力变形、周边缝变位等的影响,为选取主堆石孔隙率、次堆石区筑坝材料提供依据。计算结果表明,主堆石孔隙率采用20.1%和19.1%均可行,次堆石筑坝材料采用弱风化带粉砂岩∶页岩=7∶3和弱风化带粉砂岩∶页岩=5∶5均是可行的。但是相对于其他方案,采用主堆石孔隙率为20.1%,次堆石筑坝材料为弱风化带粉砂岩∶页岩=7∶3的方案,坝体、面板、趾板的应力变形较小。  相似文献   

8.
为深入了解挤压边墙对面板堆石坝结构性态的影响,以某工程面板堆石坝为对象,建立典型断面的平面模型,其中该模型包括非简化的挤压边墙和简化的等效厚度的挤压边墙2个模型。通过非线性有限元计算方法,对比分析了原始施工方法和挤压边墙施工方法的大坝应力变形状态;分析挤压边墙取等效厚度的计算是否合理;研究挤压边墙对整体面板和堆石体的应力和变形的影响。通过分析得出,挤压边墙对堆石体影响不大,而且有效地减小了面板在竣工期和蓄水期的挠度变形和应力,使工程更加安全经济。研究成果为挤压边墙施工的推广提供参考。  相似文献   

9.
在现场实际的开挖地形和填筑方式条件下,对水布垭面板堆石坝工程进行了施工模拟和水库初期蓄水仿真计算分析,并和实测结果进行对比.结果表明:在复杂加载路径下,水布垭面板堆石坝体和混凝土面板应力变形性状符合一般规律;模拟加载过程越真实,计算结果与实测结果越接近;堆石体的应力变形与应力历史(或应力路径)有关,在计算中,应尽可能真实地模拟实际加载路径;蓄水前后水布垭整个坝体工程都处于安全稳定状态.  相似文献   

10.
根据水布垭面板堆石坝坝体几何参数和周围山体地形地质资料,建立面板堆石坝三维数值计算模型。以坝体在竣工时的变形实测资料为依据,采用智能位移反演方法反演获得堆石体流变变形参数,对坝体的长期运行变形进行计算分析。通过对大坝堆石体及面板在运行期的应力应变分析成果,可以看出大坝在竣工蓄水后经过一段时间的运行,坝体的整体发生了一定的沉降变形,面板垂直缝、周边缝及止水部位也相应出现了一定变形。通过与实测比较分析,坝体变形在合理范围以内并趋于稳定。在今后坝体的长期运行中,要对出现变形位置的测点加强监测,确保整个坝体长期安全稳定运行。  相似文献   

11.
某混凝土面板堆石坝坝高144m.河谷地形复杂。采用三维非线性有限元法,建立了坝体和坝基的三维有限元模型.模拟了大坝填筑施工过程和水库蓄水过程.分析了运行期面板的应力变形及周边缝的变位特性,研究了复杂地形条件对该坝面板应力和变形的影响。计算表明:该混凝土面板堆石坝的面板应力受地形的影响较大,与坝体断面几何形态密切相关。左岸次堆石区变形大.面板应力较大,而右岸岩体的支撑作用显著,面板应力较小。右岸陡坡处及左右岸变坡处周边缝的变形较大。  相似文献   

12.
通过分析软岩不同利用方案及分区形式对高面板堆石坝力学性状的影响,获取了坝体应力和变形的变化规律。高面板堆石坝下游次堆石区中软岩含量及堆石区几何特征、主堆石体分区形式均影响面板堆石坝的力学性状。提高坝体下游堆石区的强度及刚度,可以提高各堆石区之间的协调变形能力、降低面板变形及应力。提高位于坝轴线处的堆石体承载力,可以有效降低坝体变形及面板应力。为控制高面板堆石坝的坝体变形及应力,坝轴线处坝体下部堆石区宜填筑承载力高的堆石体,下游堆石区中软岩比例不宜超过30%。  相似文献   

13.
面板堆石坝是现阶段国内外运用较多的实用坝型,其大坝蓄水初期是对工程的重大考验。对缅甸道耶坎面板堆石坝蓄水初期的监测资料进行了整理分析,重点对关系到大坝安全运行的堆石体变形、面板挠度变形、面板周边缝变形和大坝渗流4个重要监测物理量蓄水前后的关键数据进行对比,总结了道耶坎面板堆石坝蓄水初期的变形规律。为工程首次蓄水期安全运行提供了科学依据。  相似文献   

14.
水布垭混凝土面板堆石坝设计   总被引:1,自引:0,他引:1  
在水布垭混凝土面板堆石坝的设计中,针对筑坝材料的特性和堆石体的变形特征,进行了坝体结构及坝体材料分区的设计。对面板应力应变分析,采用E-B模型进行三维非线性有限元计算,计算成果表明:就坝体变形而言竣工期和蓄水期的水平位移与垂直沉降值,比照已建工程均在劲旅范围内;面板位移与应力分析的结果亦与已建工程的面板应务分布规律一致。  相似文献   

15.
陈平  朱家奇  王庆祥 《水力发电》2022,(6):90-95+104
结合金沙江拉哇特高混凝土面板堆石坝,分别采用邓肯E-B模型和河海统一广义塑性模型,考虑堆石料流变的遗传特性,进行大坝三维有限元分析,并在坝料相同试验结果的条件下对比研究两种不同本构模型下堆石体和面板应力变形的差异。结果表明:两种模型计算的堆石体应力变形规律相似,沉降差异不大,但河海统一广义塑性模型计算的堆石体水平位移及面板挠度均小于邓肯E-B模型;混凝土面板的位移分布差别较大,由于邓肯E-B模型不能考虑堆石料的剪胀性,计算满蓄期面板的变形远大于统一广义塑性模型结果;两种模型在满蓄期计算得到的应力较为接近,与统一广义塑性模型相比,邓肯E-B模型计算得到的堆石体第三主应力较小,面板压应力数值偏大,拉应力区域较大。不同本构模型的计算结果均说明拉哇特高混凝土面板堆石坝的变形与应力在安全范围内,现行设计方案可行。  相似文献   

16.
水布垭水电站面板堆石坝应力变形分析   总被引:4,自引:1,他引:3  
水布垭水电站面板堆石坝是当前世界上最高的混凝土面板坝,在设计和施工等方面尚缺乏经验,为此在“九五”攻关中,对其中的关键技术问题进行了科学研究。在计算分析方面,采用不同的计算模型对200m级面板坝施工,蓄水全过程进行了仿真计算,研究其应力变形规律;研究探索了特殊边界,堆石体流变特性等问题,并提出了改善面板坝应力,变形的工程措施。在高面板坝三维有限元计算中引入了堆石体流变特性,初步探讨了堆石体流变对高混凝土面板坝应力变形的影响;提出了耦合薄层单元和三维非线性摩擦接触单元,对非线性K-G模型进行了改进,采用多种模型对水布垭工程面板坝进行了二维,三维仿真计算,从技术上论证了该方案的可行性。  相似文献   

17.
根据龙背湾面板堆石坝面板挠度监测资料,通过对面板挠度变化过程、特性及挠度分布状态的分析研究表明,在蓄水前面板挠度主要受其自重和堆石体沉降的影响,面板挠度数值较小,分布比较均匀;蓄水后下部面板受水压力的影响向内法向方向变形的区域逐渐增大,中上部面板受翘板效应的影响主要表现为向外法向方向变形。龙背湾面板堆石坝面板挠度分布状态与变化过程合理,与理论计算成果基本吻合,与同类面板堆石坝面板挠度变化规律基本一致,挠度性态正常。  相似文献   

18.
为协调混凝土防渗墙与趾板间的不均匀变形,修建于深厚覆盖层上的面板堆石坝通常在防渗墙与趾板间设置连接板,而连接板长度的确定则是工程设计中的重要技术问题之一。为揭示连接板长度对面板堆石坝工作性态的影响规律,结合实际工程,通过建立不同连接板长度的面板堆石坝坝体-地基系统有限元计算模型,进而开展系列非线性有限元分析,结果表明连接板长度增加对堆石坝体及面板应力变形影响较小,对竣工期防渗墙的应力变形有利,对蓄水期防渗墙的应力变形不利,可明显降低防渗墙与连接板接缝的切向错动。  相似文献   

19.
高面板堆石坝在运行过程中面板容易出现挤压破损,坝体变形过大和变形长期不稳定是主要原因。影响堆石体和面板应力变形的因素较多,主要包括坝体堆石料分区和参数、面板分期及浇筑时机、坝体流变、垫层料表面的处理。基于实测变形反演堆石料本构参数和流变参数,运用反演得到的参数对面板堆石坝坝体和面板应力变形影响的因素进行敏感性分析,得出:提高下游次堆石的填筑标准,能有效减小高面板坝面板上部的顺坡向拉应力;面板分期能减小面板蓄水后的挠度,且最大挠度点往高高程偏移;坝体填筑完成后面板浇筑前预留的时间越长,大坝蓄水引起的变形越小。设置挤压边墙能有效减小面板中部的坝轴向应力和顺坡向应力,同时也能减小面板的挠度;面板最大挠度、坝轴向应力和顺坡向应力在坝体流变作用下逐步增大,并逐步趋于稳定。  相似文献   

20.
结合实测数据与数值模拟方法对某定向爆破堆石坝体结构在不同阶段的应力变形特性进行了分析,探讨定向爆破堆石坝的应力变形规律,并重点讨论了爆破堆石体和防渗结构的力学行为。对比分析表明:不同于常规坝体的最大沉降位于坝体2/3部位,爆破堆石最大沉降发生在爆破堆石体顶部,爆破堆石及坡积物的可压缩性是其产生较大沉降的主要原因。在此基础上,分析了爆破堆石体沉降对防渗结构应力变形的影响。结果表明:由于筑坝材料组成复杂、力学特性相差较大,导致大坝局部出现一定的不均匀沉降。700 m平台以下的反弧处出现较大的变形和应力,对沥青混凝土防渗斜墙变形造成较大影响。此外,库水位的抬升使沥青混凝土斜墙的应力和变形规律发生了较大变化,防渗体应力和变形明显增加。研究得出的定向爆破堆石坝的应力变形规律,较为全面、真实地反映了定向爆破堆石坝的爆破堆石体、坝体及防渗体的运行性态,同时也对高面板堆石坝、软岩筑坝、弃渣坝、滑坡及堰塞体等大变形结构体的安全性态研究具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号