首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Miscibility in amorphous phase and behavior in a crystalline phase of blends of two semicrystalline and isomeric polymers, isotactic polystyrene (iPS) and syndiotactic polystyrene (sPS), was probed. Optical and scanning electron microscopy results indicate no discernible heterogeneity in iPS/sPS blends in either melt state or rapidly quenched amorphous super‐cooled state, while the Tg behavior of the quenched amorphous blends shows an intimately mixed state of two polymer chains. The crystal forms of the blends were further analyzed to provide additional evidence of miscibility in the amorphous domain. The sPS in the iPS/sPS blends upon melt crystallization was found to predominantly exist as the more stable β‐form (rather than mixed β‐form and α‐form in neat sPS), which also suggests evidence of miscibility in the iPS/sPS blends. The melting behavior of semicrystalline sPS in the iPS/sPS mixtures was analyzed using the Flory‐Huggins approach for estimation of interactions. By measuring the equilibrium melting point of the higher‐melting sPS species in the sPS/iPS blends, a small negative value, for the interaction parameter (χ ≈ ?0.11) was found. Further, by introducing a third polymer, poly(2,6‐dimethyl‐p‐phenylene oxide) (PPO), a ternary iPS/sPS/PPO blend system was also proven miscible, which constituted a further test for stable phase miscibility in the iPS/sPS blend. General nature of miscibility in blends composed of two crystalline isomeric polymers is discussed. Issues in dealing with blends of polymers of the same chemical repeat unit but different tacticities were addressed.

X‐ray diffractograms for neat sPS and iPS/sPS blends, each having been isothermally crystallized at 245 °C for 4 h.  相似文献   


2.
Fang-Chyou Chiu  Chi-Gong Peng 《Polymer》2002,43(18):4879-4886
This work examined how the molecular weight of atactic polystyrene (aPS) affects the thermal properties and crystal structure of syndiotactic polystyrene (sPS)/aPS blends using differential scanning calorimetry, polarized light microscopy and wide angle X-ray diffraction (WAXD) technique. For comparative purposes, the structure and properties of the parent sPS was also investigated. The experimental results indicated that these blends showed single glass transition temperatures (Tgs), implying the miscibility of these blends in the amorphous state regardless of the aPS molecular weight. The non-isothermal and isothermal melt crystallization of sPS were hindered with the incorporation of aPSs. Moreover, aPS with a lower molecular weight caused a further decrease in the crystallization rate of sPS. Complex melting behavior was observed for parent sPS and its blends as well. The melting temperatures of these blends were lower than those of the parent sPS, and they decreased as the molecular weight of aPS decreased. Compared with the results of the WAXD study, the observed complex melting behavior resulted from the mixed polymorphs (i.e. the α and β forms) along with the melting-recrystallization-remelting of the β form crystals during the heating scans. The degree of melting-recrystallization-remelting phenomenon for each specimen was dependent primarily on how fast the sPS crystals were formed instead of the incorporation of aPSs. Furthermore, the existence of aPS in the blends, especially the lower molecular weight aPS, apparently reduced the possibility of forming the less stable α form in the sPS crystals.  相似文献   

3.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

4.
Styrene-acrylic acid copolymers exhibit miscibility with various aliphatic, crystalline polyamides (e.g., nylon 6, 11, and 12) at 20% acrylic acid content in the copolymer. At 8% acrylic acid, phase separation is observed with the crystalline polyamides. At 14% acrylic acid, partial miscibility is observed with each polyamide, resulting in the Tg's of the constituents shifted toward the other constituent. The miscibility of the styrene-acrylic acid copolymers ( > 14 wt % AA) can be ascribed to hydrogen bonding interactions with the polyamides. Styrene-acrylic acid (20% AA) copolymers are miscible with other nylons with alternating amide orientation along the chain (e.g., nylon 6,6 and nylon 6,9). These samples tend to crosslink upon exposure to temperatures above the polyamide melting point unlike the nylon 6, 11, and 12 blends in which branching may only occur. Nylon 11/styrene-acrylic acid blends were chosen for crystallization rate studies. A melting point depression of nylon 11 occurs with addition of the styrene-acrylic acid (20% AA). The Flory-Huggins interaction parameter from the melting point depression is calculated to be -0.27. The crystallization rate of nylon 11 is significantly reduced with the addition of the miscible SAA copolymers (20% AA). The spherulitic growth rate equation predicts this behavior based on a Tg increase with SAA addition.  相似文献   

5.
This study examines the miscibility and mechanical properties of isotactic polypropylene (iPP) and olefin block copolymer (OBC) blends (70/30 wt %). The blends exhibit phase-separated morphology. The OBC domain size decreases with increasing the 1-octene content in the soft segment. The crystallization, melting behavior, and the long spacing of the iPP component in the blends are nearly the same as those of neat iPP, while the Tg of the iPP component shifts slightly to lower temperature. “Blocky” OBC is immiscible with iPP, while the soft segment rich polymers in OBC could be partially miscible with iPP. The impact strength of the blends is greatly increased with increasing the 1-octene content in the OBC soft segment. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
This work examined how pre‐melting temperature (Tmax) affects the isothermal melt crystallization kinetics, the resulting melting behavior and crystal structure of syndiotactic polystyrene (sPS) by using differential scanning calorimetry (DSC), polarized light microscopy (PLM) and the wide angle X‐ray diffraction (WAXD) technique. Experimental results indicated that raising Tmax decreased the nucleation rate and the crystal growth rate of sPS. The Avrami equation was also used to analyze the overall crystallization kinetics. The Avrami exponent n and rate constant K were determined for different Tmax specimens at various crystallization temperatures (Tc's). Our results indicated that the nucleation type of sPS is Tmax and Tc dependent as well. Evaluation of the activation energy for the isothermal crystallization processes revealed that it increases from 375 kJmol?1 to 485 kjmol ?1 with an increase of Tmax. From the melting behavior study, we believe that the Tmax and Tc‐dependent multiple melting peaks are associated with different polymorphs as well as recrystallized crystals formed during heating scans. Moreover, the percentage content of α form in the crystals formed under different crystallization conditions was estimated through WAXD experiments.  相似文献   

7.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Poly(trimethylene terephthalate) (PTT)/polycarbonate (PC) blends with different compositions were prepared by melt blending. The miscibility and phase behavior of melt-quenched and cold-crystallized blends were studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy. The blends of all compositions display only one glass transition (T g ) in both states. The melting temperature and the crystallinity of PTT in the blend decrease with increasing PC content. The dielectric results for the melt-quenched blends, for PC content up to 60 wt.%, exhibited two merged relaxation peaks during the heating scan; the lower temperature relaxation peak represent the normal glass-transition (α) relaxation of the mixed amorphous phase and the higher temperature relaxation due to the new-constrained mixed amorphous phase after crystallization. Cold-crystallized blends displayed only one glass transition α-relaxation whose temperatures varied with composition in manner similar to that observed by DSC. The dielectric α-relaxation of cold crystallized blends has been analyzed. Parameters relating to relaxation broadening, dielectric relaxation strength, and activation energy were quantified and were found to be composition dependent. The PTT/PC blends could be considered as two-phase system, a crystalline PTT phase and a mixed amorphous phase consisting of a miscible mixture of the two polymers. However, the crystallinity was only detected for blends containing greater than 40 wt.% PTT.  相似文献   

9.
The miscibilities of poly(phenylene) sulfide/poly(phenylene sulfide sulfone) (PPS/PPSS) and poly(phenylene) sulfide/poly(phenylene sulfide ether) (PPS/PPSE) blends were invesigated in terms of shifts of glass transition temperatures Tg of pure PPS, PPSS, a dn PPSE. The crystallization kinetics of PPS/PPSS blends was also studied as a function of molar composition. The PPS/PPSS and PPS/PPSE blends are respectively partially and fully miscible. PPSE shows a plasticizing effect on PPS as does PPS on PPSS, which necessarily improves te processibility in the respective systems. We can control Tg and melting temperature Tm of PPS by varying amounts of PPSE in blends. The melt crystallization temperature Tmc of PPS/PPSE blends was higher than that of the PPSE homopolymer. Therefore, these blends require shorter cycle times in processing than pure PPSE. The overall rate of crystallization for PPS/PPSS blends follows the Avrami equation with an exponent ?2. The maximal rate of crystallization for PPS/PPSS blends occurs at a temperatre higher by 10°C than that for PPS, while the crystallization half time t1/2 is 4 times shorter. In the cold crystallization range, crystal growth rates increase and Avrami exponents decrease significantly as the temperature increases.  相似文献   

10.
The compatibilization of syndiotactic polystyrene (sPS)/polyamide 6 (PA‐6) blends with maleic anhydride grafted syndiotactic polystyrene (sPS‐g‐MA) as a reactive compatibilizer was investigated. The sPS/PA‐6 blends were in situ compatibilized by a reaction between the maleic anhydride (MA) of sPS‐g‐MA and the amine end group of PA‐6. The occurrence of the chemical reaction was substantiated by the disappearance of a characteristic MA peak from the Fourier transform infrared spectrum. Morphology observations showed that the size of the dispersed PA‐6 domains was significantly reduced and that the interfacial adhesion was much improved by the addition of sPS‐g‐MA. As a result of reactive compatibilization, the impact strengths of the sPS/PA‐6 blends increased with an increase in the sPS‐g‐MA content. The crystallization behaviors of the blends were affected by the compatibilization effect of sPS‐g‐MA. A single melting peak of sPS in the noncompatibilized blend was gradually split into two peaks as the amount of the compatibilizer increased. A single crystallization peak of PA‐6 in the noncompatibilized blend became two peaks with the addition of 3 wt % sPS‐g‐MA. The new peak was a result of the fractionation crystallization. As the amount of sPS‐g‐MA increased, the intensity of the new peak increased, and the original peak nearly disappeared. Finally, the crystallization peak of PA‐6 disappeared with 20 wt % sPS‐g‐MA in the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2502–2506, 2003  相似文献   

11.
The melting and crystallization behaviors of poly(trimethylene terephthalate) (PTT)/acrylonitrile–butadiene–styrene (ABS) blends were investigated with and without epoxy or styrene–butadiene–maleic anhydride copolymer (SBM) as a reactive compatibilizer. The existence of two separate composition-dependent glass-transition temperatures (Tg's) indicated that PTT was partially miscible with ABS over the entire composition range. The melting temperature of the PTT phase in the blends was also composition dependent and shifted to lower temperatures with increasing ABS content. Both the cold crystallization temperature and Tg of the PTT phase moved to higher temperatures in the presence of compatibilizers, which indicated their compatibilization effects on the blends. A crystallization exotherm of the PTT phase was noticed for all of the PTT/ABS blends. The crystallization behaviors were completely different at low and high ABS contents. When ABS was 0–50 wt %, the crystallization process of PTT shifted slightly to higher temperatures as the ABS content was increased. When ABS was 60 wt % or greater, PTT showed fractionated crystallization. The effects of both the epoxy and SBM compatibilizers on the crystallization of PTT were content dependent. At a lower contents of 1–3 wt % epoxy or 1 wt % SBM, the crystallization was retarded, whereas at a higher content of 5 wt %, the crystallization was accelerated. The crystallization kinetics were analyzed with a modified Avrami equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The melting, crystallization behaviors, and nonisothermal crystallization kinetics of the ternary blends composed of poly(ethylene terephthalate), poly(trimethylene terephthalate) (PTT) and poly(buthylene terephthalate) (PBT) were studied with differential scanning calorimeter (DSC). PBT content in all ternary blends was settled invariably to be one‐third, which improved the melt‐crystallization temperature of the ternary blends. All of the blend compositions in amorphous state were miscible as evidenced by a single, composition‐dependent glass transition temperature (Tg) observed in DSC curves. DSC melting thermograms of different blends showed different multiple melting and crystallization peaks because of their various polymer contents. During melt‐crystallization process, three components in blends crystallized simultaneously to form mixed crystals or separated crystals depending upon their content ratio. The Avrami equation modified by Jeziorny and the Ozawa theory were employed to describe the nonisothermal crystallization process of two selected ternary blends. The results spoke that the Avrami equation was successful in describing the nonisothermal crystallization process of the ternary blends. The values of the t1/2 and the parameters Zc showed that the crystallization rate of the ternary blends with more poly(ethylene terephthalate) content was faster than that with the lesser one at a given cooling rate. The crystal morphology of the five ternary blends investigated by polarized optical microscopy (POM) showed different size and distortional Maltese crosses or light spots when the PTT or poly(ethylene terephthalate) component varied, suggesting that the more the PTT content, the larger crystallites formed in ternary blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
Thermal analysis of solution precipitated blends of two crystallizable polymers, poly(vinylidene fluoride) (PVDF) and copoly(chlorotrifluorethylene-vinylidene fluoride) (copoly(CTFE-VDF)), has been carried out to study the transition temperatures, crystallinity, and crystallization rates. PVDF crystallizes over the whole blend composition either during precipitation from solution or upon cooling from the melt. The high degree of crystallinity attained, higher than in PVDF by itself, suggests the occurrence of partial PVDF-copolymer cocrystallization. The melt crystallization temperature, decreasing with cooling rate, is lower in PVDF-rich blends than for lean blends. However, the heat of crystallization increases with cooling rate, suggesting that the crystal composition depends on crystallization rate. No significant melting temperature depression due to blending was observed. However, the blends glass transition (Tg) changes linearly with composition, but less than expected by any mixing rule applicable to compatible systems. Annealing of the blends above Tg results in an additional crystalline phase consisting mainly of the copolymer. The amount of these crystals increases with PVDF content, due to partial cocrystallization and kinetic effects. The addition of the copolymer to PVDF results in a volume-filling spherulitic structure consisting of spherulites which decrease in size with increasing copolymer content.  相似文献   

14.
The miscibility and crystallization behavior of binary crystalline blends of poly(butylene terephthalate) [PBT] and polyarylate based on Bisphenol A and a 27/73 mole ratio of isophthalic and terephthalic acids [PAr(I27-T73)] have been investigated by differential scanning calorimetry (DSC). This blend system exhibits a single composition-dependent glass transition temperature over the entire composition range. The equilibrium melting point depression of PBT was observed, and Flory interaction parameter χ12 = −0.96 was obtained. These indicate that the blends are thermodynamically miscible in the melt. The crystallization rate of PBT decreased as the amount of PAr(I27-T73) increased, and a contrary trend was found when PAr(I27-T73) crystallized with the increase of the amount of PBT. The addition of high-Tg PAr(I27-T73) would suppress the segmental mobility of PBT, while low-Tg PBT would have promotional effect on PAr(I27-T73). The crystallization rate and melting point of PBT were significantly influenced when the PAr(I27-T73) crystallites are previously formed. It is because not only does the amorphous phase composition shift to a richer PBT content after the crystallization of PAr(I27-T73), but also the PAr(I27-T73) crystal phase would constrain the crystallization of PBT. Thus, effects of the glass transition temperature, interaction between components, and previously formed crystallites of one component on the crystallization behavior of the other component were discussed and compared with blends of PBT and PAr(I-100) based on Bisphenol A and isophthalic acid.  相似文献   

15.
Crystallization kinetics and morphology in miscible blends of syndiotactic polystyrene (sPS) and atactic postyrene (aPS) have been investigated by means of time-resolved depolarized light scattering (DPLS), polarized optical microscopy (POM) and scanning electron microscopy (SEM). Two different weight-average molecular weight of aPS, i.e. Mw=100k and 4.3k, were used to prepare the blends and denoted sPS/aPS(H) and sPS/aPS(M), respectively. Owing to a dilution effect, addition of aPS reduces the crystal growth rate and the overall crystallization rate of sPS; the reduction is more significant in sPS/aPS(M) of which a depression of equilibrium melting temperature is found due to the enhanced mixing entropy. Linear crystal growth is always observed in sPS/aPS(H) at the temperatures studied (240-269 °C) and results in an interfibrillar segregation morphology revealed by SEM, whereas sPS/aPS(M) with high aPS content exhibits non-linear growth behavior at low supercooling and gives an interspherulitic segregation morphology. Based on the Lauritzen-Hoffman theory, the fold surface free energies (σe) of sPS lamellae derived from DPLS and POM are in fair agreement, being 15.1 erg/cm2 from the former and 12.6 erg/cm2 from the latter. The peculiarly low values of σe and the derived work of chain folding are discussed briefly. On addition of aPS, the lateral surface free energy of lamellae remains intact (9.9 erg/cm2) regardless of aPS molecular weight used, which is ascribed to the absence of specific interaction between sPS and aPS components. Moreover, it seems that the activation energy for sPS chains to diffuse from the miscible melt to the crystal growth front is slightly increased in sPS/aPS(M), plausibly attributable to the extra energy required for the demixing process.  相似文献   

16.
The crystallization kinetics of pure poly(ε‐caprolactone) (PCL) and its blends with bisphenol‐A tetramethyl polycarbonate (TMPC) was investigated isothermally as a function of composition and crystallization temperature (Tc) using differential scanning calorimetric (DSC) and polarized optical microscope techniques. Only a single glass‐transition temperature, Tg, was determined for each mixture indicating that this binary blend is miscible over the entire range of composition. The composition dependence of the Tg for this blend was well described by Gordon–Taylor equation with k = 1.8 (higher than unity) indicating strong intermolecular interaction between the two polymer components. The presence of a high Tg amorphous component (TMPC) had a strong influence on the crystallization kinetics of PCL in the blends. A substantial decrease in the crystallization kinetics was observed as the concentration of TMPC rose in the blends. The crystallization half‐time t0.5 increased monotonically with the crystallization temperature for all composition. At any crystallization temperature (Tc) the t0.5 of the blends are longer than the corresponding value for pure PCL. This behavior was attributed to the favorable thermodynamics interaction between PCL and TMPC which in turn led to a depression in the equilibrium melting point along with a simultaneous retardation in the crystallization of PC. The isothermal crystallization kinetics was analyzed on the basis of the Avrami equation. Linear behavior was held true for the augmentation of the radii of spherulites with time for all mixtures, regardless of the blend composition. However, the spherulites growth rate decreased exponentially with increasing the concentration of TMPC in the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3307–3315, 2007  相似文献   

17.
EVA was blended with phenoxy over the whole range of composition using a twin‐screw Brabender. Two‐phase separation caused by EVA crystallization was observed in the EVA‐rich blends and the dispersed domain of EVA was not clearly shown in the phenoxy‐rich blends. Differential scanning calorimetry (DSC) showed that the glass transition temperature (Tg) of EVA was increased by 5–10°C in the EVA‐rich blends but the Tg of phenoxy was superposed over the melting behavior of EVA. X‐ray diffraction measurement indicated that EVA crystallization was restricted in the phenoxy‐rich blends and the EVA crystal structure was influenced by incorporation of phenoxy into the EVA‐rich blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 227–236, 1999  相似文献   

18.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

19.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

20.
Syndiotactic polystyrene/highly‐impact polystyrene (sPS/HIPS) blends were prepared with a twin‐screw extruder. Differential scanning calorimetry and wide angle X‐ray diffractometry were used to investigate the effect of the maximal melting temperature, the content of HIPS and cooling rates on the melting and crystallization behavior and crystal forms of sPS. The experimental results indicated that the addition of low content of HIPS induced the formation of more α‐crystal, whereas the addition of high content of HIPS favored the formation of β‐crystal for sPS/HIPS blends crystallized dynamically from low melting temperature. Both sPS and its blends produced only β‐crystal as crystallized from high melting temperature. The crystallization temperatures of sPS and its blends decreased as the melting temperature increased, favoring the formation of β‐crystal. Higher temperature of sPS crystallization favored the formation of more content of α‐crystal while lower temperature of sPS crystallization produced more content of β‐crystal. Cooling rates showed no significant effect on the crystal form of sPS and its blends, but influenced the melting behavior of both sPS and its bends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3353–3361, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号