首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 80 毫秒
1.
2.
刘向  郭振波  张伟  王东  钱斌 《电源技术》2007,31(2):116-119
用质量百分比为40%Pt/C Nafion制备了亲水电极,并与Nafion112质子交换膜热压制备了质子交换膜燃料电池膜电极组件.用恒电流极化和电化学阻抗谱研究了电极组分对性能的影响,同时优化了各组分的含量.在碳纸基体和催化剂层之间引入了C/FEP催化剂支撑层,支撑层碳粉的优化载量为0.8 mg/cm2,FEP的优化质量百分含量为40%.电极催化剂层Pt的适宜载量为(0.40±0.05)mg/cm2,Nafion的优化质量百分含量为30%.  相似文献   

3.
质子交换膜燃料电池膜电极组件研究   总被引:3,自引:1,他引:3  
膜电极组件(MEA)是质子交换膜燃料电池的核心部件。系统地研究了MEA的组成和结构对其性能的影响。研究提出:催化层中掺杂Nafion聚合物的亲水电极比传统的催化层中掺杂PTFE的疏水电极性能有了较大的提高;不同种类质子交换膜对MEA的性能影响很大,Nafion112和Dow膜是目前比较适宜的质子交换膜;采用石墨类碳纸的电极性能高于采用碳纤维类碳纸的电极;电极催化层中Nafion聚合物的最佳含量比为30%左右。根据氢电极和氧电极反应难度的不同,提出为了减少催化剂的用量同时不显著影响电池的性能,氢电极的铂载量应该低于电极的观点,并通过了实验验证。  相似文献   

4.
质子交换膜燃料电池发展现状   总被引:2,自引:0,他引:2  
介绍了质子交换膜燃料电池(PEMFC)的结构、组成和工作原理,叙述了不同质子交换膜的来源特点及导电性与膜参数的关系;对不同电极和电极催化剂性能作了评述;综述了目前几种氢的来源、优缺点及质子交换膜燃料电池有关问题的发展动向和前景。  相似文献   

5.
转印法是一种间接将催化层涂布在质子交换膜上的膜电极组件制备方法,其制备工艺简单,周期短,且制备过程中质子交换膜不与任何溶剂接触,有效避免了膜的溶胀问题。采用刮刀涂布技术,将催化剂浆料均匀地涂布于转印膜上,调节刮刀间隙与刮刀运行速度可有效地控制金属催化剂的载量。扫描电子显微镜法(SEM)测试表明转印后的催化层表面形貌完整、孔隙分布均匀,膜电极各组件之间结合紧密且厚度一致。将该工艺制备的膜电极组装成单电池,测试结果表明:在阴、阳极Pt载量分别为0.463、0.264 mg/cm2条件下,以空气作为阴极反应气体的单电池在常压下的最大功率密度可达0.75 W/cm2。  相似文献   

6.
张东方  潘牧  罗志平 《电池工业》2003,8(4):180-184
介绍了质子交换膜燃料电池的核心组成与工作原理,对燃料电池的膜材料和电催化剂、膜电极技术的发展现状以及对膜电极的制作工艺和结构优化进行了评述和分析,指出了目前质子交换膜燃料电池研究存在的问题及发展趋势。  相似文献   

7.
质子交换膜燃料电池电催化剂研究及膜电极制备技术   总被引:13,自引:4,他引:13  
阻碍质子交换膜燃料电池商业化的关键问题之一是其电催化剂昂贵。文中对质子交换膜燃料电池中铂系电催化剂、非铂系电催化剂研究情况进行评述。影响催化活性的基本因素是电催化剂的颗粒尺寸及其表面功能群。将不同组分混合形成的共生材料的催化活性要比单一材料的活性高。膜电极结构和性能与膜电极制备技术密切相关。分析结果表明,在质子交换膜燃料电池商业化进程中,不仅要开发纳米级、低成本的电催化剂,更应提高电催化剂利用率。电催化剂利用率与贵金属催化剂的颗粒尺寸和分散度及膜电极制备工艺技术有关  相似文献   

8.
质子交换膜燃料电池采用固体聚合物膜为电解质,简化了电池的水和电解质管理;薄的电解质膜使其可以获得非常高的比能量;高度可靠性和环境友好使其在用于航天、陆地和水下设备电源等方面具有广泛的应用前景。良好的电极结构是获得高的电池性能的先决条件。本文采用扫描电镜,对质子交换膜燃料电池的铂电催化剂、电极表面和电极切面等进行了分析。结果表明:只有良好地分散,催化剂才有较大的表面积;电极的催化层经热压后,厚度减薄一半;在电极内过多地浸入Nafion将增大电解质电阻,采用喷涂法向电极内浸入Nafion易在电极表面形成一层电解质薄膜,造成电极内Nafion不足,表面过剩,减少电极反应界面和增大质子传递阻力。  相似文献   

9.
质子交换膜燃料电池CCM膜电极   总被引:1,自引:0,他引:1  
采用喷涂工艺制备了三合一(CCM,Catalyst Coated Membrane)型质子交换膜燃料电池膜电极,研究了分散剂、催化剂、质子交换膜对膜电极性能的影响.结果表明:CCM型膜电极的放电性能好于传统热压方法制备的膜电极;乙醇、异丙醇和乙二醇等水溶液分散剂对CCM膜电极中低电流密度区放电性能影响不大,而在高电流的浓差极化控制区乙二醇最佳,而乙醇最差;优化催化剂的Pt担量和阴极催化剂的用量能够显著提高膜电极的性能,而通过减小质子交换膜的厚度,降低膜的面电阻可以进一步提高膜电极的放电性能.  相似文献   

10.
超低铂担量质子交换膜燃料电池电极   总被引:5,自引:3,他引:5  
为了降低质子交换膜燃料电池(PEMFC)制作成本,必须降低其电极铂担量。中国科学院大连化学物理研究所燃料电池工程中心制备的电极,铂担量已降到0.08mg/cm2。本文使用循环伏安、扫描电镜、电池评价等方法对这种电极进行了分析、表征,其催化剂利用率可以达到30%,催化层厚度大约为5μm。用这种电极与Nafion112组装的电池,性能可达到750mA/cm2,0.7V  相似文献   

11.
PEM燃料电池膜电极制备方法研究进展   总被引:1,自引:0,他引:1  
吕金艳  张学军 《电池工业》2006,11(6):410-413
膜电极组件(MEA)是质子交换膜燃料电池(PEMFC)的核心部件,不仅对PEMFC的性能有很大的影响,而且对降低其生产成本、加快其商业化进程具有很重要的现实意义。在简述MEA结构的基础上,根据MEA制备过程中催化剂负载方式的不同,详细介绍了目前已有的MEA制备方法;并且对MEA制备方法的发展趋势进行了展望,认为化学沉积法、电化学沉积法、物理溅射沉积法应该是目前发展的重点,同时开发适合大规模生产的制备技术非常重要。  相似文献   

12.
质子交换膜燃料电池的初步研究   总被引:7,自引:1,他引:7  
组装了质子交换膜燃料电池 (PEMFC)单体并研究了其性能。由于氧电极的性能好坏是质子交换膜燃料电池放电性能好坏的关键 ,因此在电池氢电极侧用部分氢电极作为内氢参比电极 ,可以方便地作出氧电极的极化曲线并对其性能进行评价。考察了催化剂载体、膜电极组件 (MEA)的结构和运行条件对氧电极性能的影响并使用非线性最小二乘法拟合了电池参数。实验表明 :电池的最佳运行温度为 80℃ ,压力为氧气压力 0 .3MPa ,氢电极为 0 .3MPa ,催化层的PTFE最佳含量为 35 % ,Nafion含量为 1mg/cm2 ,Pt含量可以降至为 0 .5mg/cm2 。  相似文献   

13.
郭建伟  毛宗强  徐景明 《电源技术》2004,28(2):69-71,87
通过对分区测量法和局部膜电极法的比较,发现当加湿温度和电池温度不同时,分区测量法表现出随流道延长局部电流逐渐下降,而局部膜电极法中局部电流表现出较大的波动趋势。局部膜电极法更有利于研究局部电流的原因在于其能反映出反应气体的二相流性质,以及局部单元的水变化,而分区测量法仅表现出流道阻力,不能体现出气体的二相流及水变化过程。  相似文献   

14.
对质子交换膜燃料电池(PEMFC)膜电极组件(MEA)的结构及关键材料做了介绍,综述了MEA关键材料的回收方法。认为超临界流体法较好;醇分离法和浸渍分离法如能作进一步改进,也值得考虑。  相似文献   

15.
章晖 《电源技术》2015,(4):763-764
质子交换膜燃料电池(PEMFC)因无电解质腐蚀问题,能量转换效率高,可室温快速启动,在电动车、便携式电子设备、固定电站和军用特种电源等方面都有广阔的应用前景。研究了质子交换膜燃料电池实用化的技术及机理,对其结构缺陷进行了分析,认为开拓新的催化剂体系,合成出活性更高、稳定性更好的催化剂对于燃料电池来说意义重大。  相似文献   

16.
研究了金属离子对质子交换膜燃料电池(PEMFC)性能的影响.通过将质子交换膜、电极催化层、扩散层(GDL)在模拟电池生成水的离子溶液(Ca2 、Mg2 、Na )中浸泡不同的时间,考察了Nafion NRE-212膜和催化层中氢离子含量、扩散层的接触角,并通过组装电池比较了处理不同时间的膜、催化层压制成电极后的膜电极性能.结合循环伏安技术分析了金属离子对电极催化层的影晌.实验结果表明随着浸泡时间的增加,膜中和催化层中氢离子的浓度都逐渐下降,当膜中H 浓度降为原来的20%以下时,电池几乎不能放电;而催化层中下降为原来的27%时,电极性能却下降不大.说明在相同浓度的金属离子溶液中,催化层中氢离子受金属离子污染程度比膜受污染程度小.  相似文献   

17.
质子交换膜燃料电池膜电极铂担载量分析测定   总被引:1,自引:0,他引:1  
膜电极组件(Membrane electrode assembly,MEA)是质子交换膜燃料电池(PEMFC)的核心部分,其催化层的铂含量与电池的性能和成本密切相关.通过直接处理MEA的方法得到测试样品,然后用三种方法(石墨炉原子吸收光谱、电感耦合等离子体原子发射光谱和极谱分析法)分别测定其铂含量.通过对比三种方法的测试结果和理论计算值,建立了一种准确、方便的膜电极处理和铂担载量测试方法来分析、评价PEMFC的关键材料--MEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号