首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We have previously reconstructed the gas exchange tissue of the adult muscovy duck, Cairina moschata using a method of manually aligning sections and tracing the contours of the components of the gas exchange tissue. This reconstruction method demonstrated that the air capillaries are comprised of an expanded globular part interconnected by narrow air channels. The blood capillaries completely surround the air capillaries forming an anastomosing meshwork of short segments. However, the resulting reconstruction was limited in scope because of the laborious process of tracing the profiles of each component through the sequence of micrographs. We have now reconstructed a larger proportion of the exchange tissue by using a cross-correlation based alignment strategy and have demonstrated that the staining intensity of each of the exchange tissue components is sufficiently different to allow them to be identified by simple filtering and thresholding. The resulting reconstructions sample a much larger proportion of the exchange tissue and demonstrate the heterogeneity of structures from different locations in the parabronchus. We have shown that a sheet-flow-type arrangement of blood capillaries surrounds the infundibulum; this represents an unexpected functional convergence with the arrangement of blood capillaries surrounding the mammalian alveoli. It is feasible, using this reconstruction strategy, to analyse the exchange tissue of a large number of avian species in order to determine structural correlates of function. The resulting reconstructions could be analysed in order to determine the basis of the functional efficiency and rigidity of the avian lung.  相似文献   

2.
We employed macroscopic and ultrastructural techniques as well as intratracheal casting methods to investigate the pattern of development, categories, and arrangement of the air conduits in the chicken lung. The secondary bronchi included four medioventral (MVSB), 7-10 laterodorsal (LDSB), 1-3 lateroventral (LVSB), several sacobronchi, and 20-60 posterior secondary bronchi (POSB). The latter category has not been described before and is best discerned from the internal aspect of the mesobronchus. The secondary bronchi emerged directly from the mesobronchus, except for the sacobronchi, which sprouted from the air sacs. Parabronchi from the first MVSB coursed craniodorsally and inosculated their cognates from the first two LDSB. The parabronchi from the rest of the LDSB curved dorsomedially to join those from the rest of the MVSB at the dorsal border. Sprouting, migration, and anastomoses of the paleopulmonic parabronchi resulted in two groups of these air conduits; a cranial group oriented rostrocaudally and a dorsal group oriented dorsoventrally. The neopulmonic parabronchial network formed through profuse branching and anastomoses and occupied the ventrocaudal quarter of the lung. There were no differences in the number of secondary bronchi between the left and right lungs. Notably, a combination of several visualization techniques is requisite to adequately identify and enumerate all the categories of secondary bronchi present. The 3D arrangement of the air conduits ensures a sophisticated system, suitable for efficient gas exchange. Microsc. Res. Tech., 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号