首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 59 毫秒
1.
本文提出了利用改进的源倍增法测量次临界系统的绝对反应性与跳源法测量的相对反应性相比获得缓发中子有效份额βeff的方法。用改进的源倍增法测量了ADS启明星1#次临界反应堆某次临界状态下的绝对反应性为-2.235×10-3。在相同的次临界状态下,用跳源法测量了以βeff为单位的反应性ρ/βeff为-0.291 5 $,二者相比得到ADS启明星1#次临界反应堆的缓发中子有效份额为0.007667。利用MCNP建模计算的结果为0.007 783,两者在2%内符合。  相似文献   

2.
本文主要利用252Cf外中子源驱动的ADS启明星Ⅱ号次临界装置来验证理论计算的次临界度及不同次临界度下的断束动态特性。简要介绍了利用跳源法在ADS启明星Ⅱ号上测量次临界度的原理、实验装置、测量系统、堆芯布置及实验结果等。实验通过变化堆芯燃料棒的装载来模拟3个次临界状态,即keff分别为0.99、0.98和0.97。实验结果与理论计算结果符合较好,验证了理论计算的正确性。经过实验验证的理论计算程序和核数据,为将来的中国科学院战略性先导科技专项--未来先进核裂变能ADS嬗变系统的次临界反应堆设计提供参考价值。  相似文献   

3.
启明星1#次临界装置是我国为开展加速器驱动的次临界系统(ADS)研究而建立的国际上第1个具有快-热耦合结构的次临界反应堆实验装置。启明星1#次临界装置在确定的装载下、由不同能量的外中子源作用时,利用MCNP程序分别对装置快中子能谱区、热中子能谱区燃料元件的径向及轴向裂变率分布进行模拟计算,所使用外中子源的中子能量分别为2.5、5、14MeV。计算结果表明:在外中子源源强相同的情况下,源中子能量越高,裂变率越大;在源中子能量相同的情况下,次临界反应堆的轴向裂变率分布为中间高、两端低,径向裂变率分布在快中子能谱区先减小后增大,而热中子能谱区则是先增大后减小,然后,随着接近反射层又逐渐增大。该裂变率分布计算结果为后续实验测量和探测器布置提供了参考。  相似文献   

4.
介绍了跳源法测量启明星Ⅱ号反应堆次临界度的方法原理、系统组成。基于LabVIEW平台完成了两种不同次临界度情况下的跳源实验并对数据进行了分析和处理,将实验得到的k_(eff)与理论计算结果进行了比较,结果符合较好。  相似文献   

5.
启明星1#次临界装置内不同位置探测器的中子计数率变化   总被引:2,自引:1,他引:1  
在启明星1#次临界装置上进行了次临界外推实验,外中子源分别采用Am-Be中子源和252Cf中子源,放置在启明星1#次临界装置中心,中子探测器放置在次临界装置内不同位置,研究相对中子计数率的变化。实验测量结果表明:在启明星1#次临界装置不同位置的探测器测量得到的中子计数率变化不同,但对外推结果影响不大。  相似文献   

6.
文章介绍加速器驱动次临界系统(ADS)中次临界实验装置——启明星1#的设计目的、要求、结构和可开展的工作。启明星1#是由快中子能谱区和热中子能谱区耦合组成的堆芯和由高压倍加器氘-氚反应中子源来驱动的次临界系统。快中子能谱区处在堆芯内部,该区提供快中子谱,还可放大外中子源,以驱动热区;热中子能谱区处在堆芯外部,主要用来能量放大,以维持装置的链式裂变反应。  相似文献   

7.
启明星1#次临界装置热中子能谱区裂变率分布测量   总被引:2,自引:2,他引:0  
启明星1#是我国专门为开展加速器驱动次临界系统研究而建立的国际上第1个具有快-热耦合结构的次临界反应堆实验装置。采用MCNP程序对堆芯裂变率分布进行指导性计算,并参考计算结果布置探测片,用固体核径迹探测器测量了堆芯热区裂变率分布。测量结果显示:堆芯有反射层一端的裂变率比无反射层一端的高;轴向加装反射层末端的裂变率明显增大。测量结果对确定热区的裂变功率提供了数据。  相似文献   

8.
启明星1#次临界装置建成后,在第1阶段的实验研究即用Am-Be稳态外中子源驱动启明星1#次临界装置,Am-Be稳态外中子源的平均中子能谱约4MV,初步测量了其中子学特性后,又于2005年10月到11月进行了第2阶段的实验,即用高压倍加器产生的脉冲外中子源驱动启明星1#次临界装置。  相似文献   

9.
次临界反应堆的反应性测量问题,一直是实验反应堆物理中的一个难题,且近年来越来越迫切。文章针对ADS次临界系统的特征,提出了用脉冲源法结合源倍增法测量系统次临界度的新思路,并在ADS启明星1号次临界实验装置上进行了测量实验。根据几组不同次临界度的测量结果来看,与理论计算结果偏差一般在600 pcm左右,确认了该方法的有效性。  相似文献   

10.
启明星1#是由1个快中子能谱区/热中子能谱区耦合组成的堆芯和由外中子源来驱动的次临界系统。快中子能谱区在堆芯内部,热中子能谱区在堆芯外部,快区不仅能够提供快中子能谱,还可放大外中子源用于驱动热区,热中子能谱区主要用来能量放大以维持装置的链式裂变反应。在此装置上开展通量测量实验是为了了解这种新型快热耦合装置跟其它装置相比有何异同,分别用高压倍加器驱动产生的氘氚反应和镅铍外中子源研究整个堆的通量分布,以便于开展核嬗变研究工作。  相似文献   

11.
文章对核临界安全研究中通常采用的现场测量技术———源倍增法进行研究。从有源扩散理论出发,导出了与keff不同的有源次临界中子有效增殖因子ks的表达式,并在次临界系统上进行了验证研究。验证实验研究证实了所导出的ks 的正确性。源倍增法测量的参数实际上是次临界系统在外源作用下的有源次临界中子有效增殖因子ks,而不是以往的中子有效增殖因子keff,这就解决了长期困扰人们的有关源倍增法测量的参数问题。文章讨论了ks 与keff间的差别和关系以及它们对核临界安全的影响。  相似文献   

12.
加速器驱动的次临界系统(ADS)基准装置启明星1#在外推临界实验过程中,快热交界面探测器计数率与其他位置探测器计数率存在较大异常。本工作对该实验装置外推临界实验开展数值模拟,并对快热交界面的中子能谱进行详细计算,根据计算结果对探测器在外推临界实验中的计数率异常现象进行分析。结果表明,快热交界面能谱随燃料装载量的变化是引起探测器计数率异常的主要因素,这为今后快热耦合次临界实验装置开展中子学实验研究提供了理论依据。  相似文献   

13.
以ADS次临界试验平台启明星1#为研究对象,计算分析了MA和LLFP共9种核素的嬗变反应率。通过实验测量了LLFP中137Cs的实际嬗变反应率,发现该装置对137Cs嬗变速度是其本身自然衰变的10倍。实验结果表明启明星1#具有一定的嬗变能力,经分析确认实验测量结果和理论计算结果吻合。  相似文献   

14.
反应堆物理实验中的源倍增法研究   总被引:6,自引:1,他引:5  
给出了反应堆物理实验中临界测量和次临界度测量通常所采用的源倍增方法研究。首先从有源的扩散理论出发,导出了与以前不同的源倍增方法的公式。源倍增方法测量的参数实际是次临界系统在外源作用下的有源次临界中子倍增因子ks,而不是在这之前的中子有效倍增因子keff,然后研究了实验装置的临界质量,研究了ks与外源位置和能谱的关系,证明了导出的源倍增方法的理论是正确的。该方法可像过去那样用于反应堆物理实验中的临界外推测量,但不能用于次临界度测量。解决了长期困扰人们有关源倍增方法测量的参数问题。最后讨论了ks和keff的差别和关系以及对临界外推测量和核临界安全的影响。  相似文献   

15.
与临界反应堆相比,ADS次临界反应堆的外源中子和裂变中子的空间分布具有严重的不均匀性,对应的中子价值也不同。本工作对次临界反应堆的稳态输运方程作分群扩散近似,得到了多群方程,进一步推导出按堆芯功率归一化的中子共轭方程表达式和与功率相关的中子价值函数表达式,给出了次临界反应堆中子价值的物理意义。由稳态中子共轭方程组出发,给出了两种带外加中子源的次临界反应堆增殖因数的表达式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号